organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o396-o397

rac-Methyl 4-azido-3-hydr­­oxy-3-(2-nitro­phen­yl)butanoate

aInstitute of Chemistry, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: reinhard.neier@unine.ch

(Received 18 December 2008; accepted 24 December 2008; online 28 January 2009)

In the title compound, C11H12N4O5, the mean plane through the nitro substituent on the benzene ring is inclined to the benzene mean plane by 85.8 (2)°, which avoids steric inter­actions with the ortho substituents. The hydr­oxy group is involved in bifurcated hydrogen bonds. The first is an intra­molecular O—H⋯O hydrogen bond, involving the ester carbonyl O atom, which gives rise to the formation of a boat-like hydrogen-bonded chelate ring. The second is an inter­molecular O—H⋯N hydrogen bond involving the first N atom of the azide group of a symmetry-related mol­ecule. In the crystal structure this leads to the formation of a polmer chain extending in the c-axis direction.

Related literature

For literature related to the anti­tumor properties of rhazinilam, see: Bonneau et al. (2007[Bonneau, A.-L. R., Robert, N., Hoarau, C., Baudoin, O. & Marsais, F. (2007). Org. Biomol. Chem. 5, 175-183.]). For literature related to the synthesis and structure–activity relationships of rhazinilam analogues, see: Decor et al. (2006[Decor, A., Monse, B., Martin, M.-T., Chiaroni, A., Thoret, S., Guenard, D., Gueritte, F. & Baudoin, O. (2006). Bioorg. Med. Chem. 14, 2314-2332.]); Baudoin et al. (2002[Baudoin, O., Claveau, F., Thoret, S., Herrbach, A., Guenard, D. & Gueritte, F. (2002). Bioorg. Med. Chem. 10, 3395-3400.]); Ghosez et al. (2001[Ghosez, L., Franc, C., Denonne, F., Cuisinier, C. & Touillaux, R. (2001). Can. J. Chem. 79, 1827-1839.]); Rubio & Bornmann (2001[Rubio, M. B. & Bornmann, W. G. (2001). Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, USA.]); Dupont et al. (2000[Dupont, C. D., Guenard, C., Thal, C., Thoret, S. & Gueritte, F. (2000). Tetrahedron Lett. 41, 5853-5856.], 1999[Dupont, C., Guenard, D., Tchertanov, L., Thoret, S. & Gueritte, F. (1999). Bioorg. Med. Chem. 7, 2961-2969.]); Alazard et al. (1996[Alazard, J.-P., Millet-Paillusson, C., Guenard, D. & Thal, C. (1996). Bull. Soc. Chim. Fr. 133, 251-266.]). For details of the Mukaiyama reaction, see: Mukaiyama et al. (1974[Mukaiyama, T., Banno, K. & Narasaka, K. (1974). J. Am. Chem. Soc. 96, 7503-7509.]). For literature related to the synthesis of pyrrolinone precursors, see: Vallat (2004[Vallat, O. (2004). PhD thesis, Université de Neuchâtel, Switzerland.]); Vallat et al. (2009[Vallat, O., Buciumas, A.-M., Neels, A., Stoeckli-Evans, H. & Neier, R. (2009). In preparation.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N4O5

  • Mr = 280.25

  • Monoclinic, P 21 /n

  • a = 9.4772 (11) Å

  • b = 14.0710 (12) Å

  • c = 10.1861 (12) Å

  • β = 110.496 (13)°

  • V = 1272.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 153 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: none

  • 8743 measured reflections

  • 2451 independent reflections

  • 1587 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 0.87

  • 2451 reflections

  • 230 parameters

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4 0.825 (19) 2.30 (2) 2.9439 (16) 135.5 (18)
O3—H3O⋯N2i 0.825 (19) 2.27 (2) 2.9193 (18) 135.6 (18)
C10—H10B⋯O4ii 0.95 (2) 2.557 (19) 3.350 (2) 141.0 (15)
C11—H11B⋯O1iii 0.95 (3) 2.57 (2) 3.268 (3) 130.9 (16)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}], [z+{\script{1\over 2}}].

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Rhazinilam, a natural product, has been shown to possess antitumoral properties. It induces in vitro spiralization of microtubules [vinblastin effect] and inhibits the disassembly of these microtubules [paclitaxel effect](Bonneau et al., 2007). It has shown significant in vitro cytotoxicity towards various cancer cells, but it is not active in vivo. Several groups have been interested in synthesizing and studying the structure-activity relationship of rhazinilam analogues (Decor et al., 2006; Baudoin et al., 2002; Ghosez et al., 2001; Rubia & Bornmann, 2001; Dupont et al., 2000; Dupont et al., 1999; Alazard et al., 1996).

In the synthesis of Rhazinilam analogues developed in our group the Mukaiyama reaction, a versatile synthetic tool in organic chemistry, is a key step reaction (Mukaiyama et al., 1974). In one of our retrosynthetic approaches (1-methoxyvinyloxy)trimethysilane was used as a nucleophile, 2-azido-1-(2-nitrophenyl)ethanone as an electrophile and TiCl4 as a Lewis acid, to synthesize the title hydroxyester, in high yield. This hydroxyester is a suitable precursor for the formation of the pyrrolinone required for the next step in the synthesis of Rhazinilam analogues (Vallat, 2004; Vallat et al., 2009).

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances and angles are normal. The mean plane through the nitro group is inclined to the benzene mean plane by 85.8 (2)°, so avoiding steric interactions with the ortho substituents. The hydroxyl group (O3) is involved in bifurcated hydrogen bonds (Table 1). The first is an intramolecular O—H···O hydrogen bond, involving the ester carbonyl O-atom (O4), and gives rise to the formation of a boat-like hydrogen bonded chelate ring. The second is an intermolecular O—H···N hydrogen bond involving the first N-atom (N2) of the azide group (Table 1). This leads to the formation of a polymer chain extending in the c direction. (Fig. 2). There are also two weak intermolecular C—H···O interactions involving atoms O1 and O4 and the hydrogen atoms of the butanoate moiety (Table 1).

Related literature top

For literature related to the antitumoral properties of rhazinilam, see: Bonneau et al. (2007). For literature related to the synthesis and structure–activity relationships of rhazinilam analogues, see: Decor et al. (2006); Baudoin et al. (2002); Ghosez et al. (2001); Rubia or??? Rubio & Bornmann (2001); Dupont et al. (2000, 1999); Alazard et al. (1996). For details of the Mukaiyama reaction, see: Mukaiyama et al. (1974). For literature related to the synthesis of pyrrolinone precursors, see: Vallat (2004); Vallat et al. (2009).

Experimental top

Under an atmosphere of Ar, (1-methoxyvinyloxy)trimethylsilane (1.06 g, 7.3 mmol) was dissolved in dry CH2Cl2 (15 ml) and the temperature lowered to 243K. 2-Azido-1- (2-nitrophenyl)ethanone (0.5 g, 2.4 mmol) dissolved in dry CH2Cl2 (6 ml) was added to the reaction mixture dropwise. A solution of TiCl4 (0.13 ml, 1.2 mmol), freshly distilled over polyvinylpyridine, in dry CH2Cl2 (4 ml), was added slowly. The solution became immediately red and then dark red. The reaction mixture was stirred at 243K for 15 min and then at 258K for 30 min. The cold mixture was then poured into an aqueous solution of 2 N NaOH (2.4 ml) and extracted with chloroform. The combined organic layers were washed with brine, dried over MgSO4 and concentrated under vacuum. Purification of the residue by flash chromatography (silica gel, CH2Cl2) followed by crystallization (ether/hexane) gave a white solid (Yield 76%). Colourless plate-like crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution in ether/hexane (v:v = 1:1)

Refinement top

The H-atoms were located from difference Fourier maps and freely refined: O—H = 0.825 (19) Å, C—H = 0.91 (3) - 1.02 (2) Å.

Computing details top

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 2000); cell refinement: CELL in IPDS Software (Stoe & Cie, 2000); data reduction: INTEGRATE in IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and the displacement ellipsoids drawn at the 50% probability level. The intramolecular O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the intra and intermolecular hydrogen bonds as dashed lines (see Table 1 for details).
rac-Methyl 4-azido-3-hydroxy-3-(2-nitrophenyl)butanoate top
Crystal data top
C11H12N4O5F(000) = 584
Mr = 280.25Dx = 1.463 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5300 reflections
a = 9.4772 (11) Åθ = 2.6–25.8°
b = 14.0710 (12) ŵ = 0.12 mm1
c = 10.1861 (12) ÅT = 153 K
β = 110.496 (13)°Plate, colourless
V = 1272.4 (2) Å30.40 × 0.30 × 0.30 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
1587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 25.9°, θmin = 2.5°
ϕ oscillation scansh = 1111
8743 measured reflectionsk = 1717
2451 independent reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0487P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
2451 reflectionsΔρmax = 0.23 e Å3
230 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0087 (18)
Crystal data top
C11H12N4O5V = 1272.4 (2) Å3
Mr = 280.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4772 (11) ŵ = 0.12 mm1
b = 14.0710 (12) ÅT = 153 K
c = 10.1861 (12) Å0.40 × 0.30 × 0.30 mm
β = 110.496 (13)°
Data collection top
Stoe IPDS
diffractometer
1587 reflections with I > 2σ(I)
8743 measured reflectionsRint = 0.074
2451 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088All H-atom parameters refined
S = 0.87Δρmax = 0.23 e Å3
2451 reflectionsΔρmin = 0.21 e Å3
230 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32528 (17)0.00702 (10)0.18798 (17)0.0599 (6)
O20.39794 (16)0.06178 (11)0.39169 (15)0.0653 (5)
O30.20867 (11)0.19457 (8)0.17217 (12)0.0272 (4)
O40.13982 (13)0.26155 (8)0.41688 (11)0.0370 (4)
O50.07815 (12)0.34053 (9)0.35528 (11)0.0372 (4)
N10.30233 (17)0.02628 (11)0.28967 (16)0.0424 (5)
N20.03288 (14)0.22705 (10)0.10334 (13)0.0321 (4)
N30.08103 (17)0.25861 (10)0.12165 (13)0.0340 (5)
N40.17267 (19)0.29547 (14)0.15016 (17)0.0535 (6)
C10.1474 (2)0.01792 (12)0.29231 (16)0.0330 (5)
C20.1235 (3)0.06299 (14)0.35997 (18)0.0472 (7)
C30.0179 (3)0.07913 (17)0.3639 (2)0.0574 (9)
C40.1334 (3)0.01579 (16)0.3016 (2)0.0524 (8)
C50.1057 (2)0.06436 (14)0.23568 (19)0.0391 (6)
C60.03622 (18)0.08457 (11)0.22890 (15)0.0277 (5)
C70.05471 (16)0.17238 (11)0.14778 (15)0.0253 (5)
C80.01067 (19)0.14495 (13)0.00855 (16)0.0293 (5)
C90.02297 (16)0.28584 (12)0.32851 (16)0.0263 (5)
C100.02665 (18)0.25954 (13)0.17665 (17)0.0293 (5)
C110.0434 (3)0.36959 (19)0.4988 (2)0.0489 (8)
H20.210 (2)0.1090 (17)0.404 (2)0.062 (6)*
H30.039 (3)0.1301 (18)0.409 (2)0.071 (7)*
H3O0.242 (2)0.2153 (14)0.253 (2)0.043 (6)*
H40.235 (3)0.0267 (16)0.307 (2)0.064 (6)*
H50.183 (2)0.1080 (15)0.186 (2)0.053 (6)*
H8A0.0553 (19)0.0951 (13)0.0298 (16)0.032 (4)*
H8B0.113 (2)0.1209 (12)0.0262 (17)0.035 (4)*
H10A0.0016 (19)0.3118 (13)0.1284 (17)0.037 (5)*
H10B0.133 (2)0.2515 (14)0.1442 (19)0.047 (5)*
H11A0.035 (3)0.315 (2)0.560 (3)0.084 (8)*
H11B0.128 (3)0.4060 (17)0.497 (2)0.067 (7)*
H11C0.044 (3)0.4065 (17)0.525 (2)0.062 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0611 (9)0.0464 (10)0.0834 (11)0.0058 (7)0.0395 (8)0.0098 (8)
O20.0494 (8)0.0595 (10)0.0596 (9)0.0016 (7)0.0151 (7)0.0141 (8)
O30.0215 (6)0.0308 (7)0.0259 (6)0.0016 (5)0.0039 (4)0.0006 (5)
O40.0298 (6)0.0426 (8)0.0307 (6)0.0080 (5)0.0006 (5)0.0054 (5)
O50.0262 (6)0.0445 (8)0.0401 (7)0.0067 (5)0.0108 (5)0.0081 (5)
N10.0440 (9)0.0276 (9)0.0482 (10)0.0104 (7)0.0069 (8)0.0091 (7)
N20.0236 (7)0.0413 (9)0.0279 (7)0.0005 (6)0.0048 (5)0.0044 (6)
N30.0352 (8)0.0377 (9)0.0257 (7)0.0053 (7)0.0063 (6)0.0049 (6)
N40.0431 (10)0.0645 (12)0.0571 (10)0.0023 (9)0.0228 (8)0.0169 (9)
C10.0452 (10)0.0269 (10)0.0264 (8)0.0012 (8)0.0118 (7)0.0025 (7)
C20.0829 (15)0.0269 (11)0.0336 (10)0.0010 (11)0.0226 (10)0.0010 (8)
C30.109 (2)0.0334 (13)0.0435 (12)0.0247 (13)0.0437 (13)0.0082 (9)
C40.0721 (15)0.0475 (14)0.0494 (12)0.0280 (12)0.0360 (11)0.0173 (10)
C50.0432 (10)0.0397 (11)0.0370 (9)0.0133 (9)0.0174 (8)0.0097 (9)
C60.0341 (9)0.0255 (9)0.0229 (7)0.0046 (7)0.0091 (7)0.0049 (6)
C70.0201 (7)0.0260 (9)0.0269 (8)0.0015 (6)0.0045 (6)0.0003 (6)
C80.0272 (9)0.0297 (10)0.0272 (8)0.0021 (7)0.0047 (7)0.0003 (7)
C90.0230 (8)0.0223 (9)0.0322 (8)0.0018 (7)0.0080 (7)0.0002 (7)
C100.0226 (8)0.0299 (10)0.0304 (9)0.0017 (7)0.0032 (7)0.0012 (7)
C110.0456 (12)0.0569 (15)0.0476 (12)0.0028 (11)0.0207 (10)0.0157 (11)
Geometric parameters (Å, º) top
O1—N11.224 (2)C5—C61.400 (3)
O2—N11.221 (2)C6—C71.530 (2)
O3—C71.426 (2)C7—C101.531 (2)
O4—C91.206 (2)C7—C81.542 (2)
O5—C91.330 (2)C9—C101.497 (2)
O5—C111.441 (2)C2—H21.02 (2)
O3—H3O0.825 (19)C3—H30.91 (2)
N1—C11.483 (3)C4—H41.00 (3)
N2—C81.473 (2)C5—H50.95 (2)
N2—N31.240 (2)C8—H8A1.012 (19)
N3—N41.133 (2)C8—H8B0.983 (19)
C1—C61.389 (2)C10—H10A0.959 (18)
C1—C21.390 (3)C10—H10B0.95 (2)
C2—C31.374 (4)C11—H11A0.98 (3)
C3—C41.382 (4)C11—H11B0.95 (3)
C4—C51.384 (3)C11—H11C0.93 (3)
C9—O5—C11116.57 (15)O4—C9—C10125.11 (15)
C7—O3—H3O105.2 (14)C7—C10—C9113.54 (14)
O1—N1—O2125.32 (18)C1—C2—H2119.6 (12)
O2—N1—C1117.49 (15)C3—C2—H2121.7 (12)
O1—N1—C1117.11 (15)C2—C3—H3122.3 (18)
N3—N2—C8116.57 (14)C4—C3—H3117.5 (18)
N2—N3—N4171.07 (18)C3—C4—H4120.1 (13)
N1—C1—C6122.19 (15)C5—C4—H4120.3 (13)
C2—C1—C6123.7 (2)C4—C5—H5122.8 (13)
N1—C1—C2114.10 (18)C6—C5—H5114.6 (12)
C1—C2—C3118.7 (2)N2—C8—H8A111.1 (10)
C2—C3—C4120.3 (2)N2—C8—H8B104.2 (10)
C3—C4—C5119.6 (3)C7—C8—H8A109.8 (9)
C4—C5—C6122.56 (19)C7—C8—H8B106.8 (10)
C1—C6—C7125.77 (16)H8A—C8—H8B111.5 (15)
C5—C6—C7118.97 (15)C7—C10—H10A106.5 (11)
C1—C6—C5115.17 (16)C7—C10—H10B112.4 (12)
O3—C7—C6112.72 (13)C9—C10—H10A107.2 (10)
O3—C7—C10110.15 (13)C9—C10—H10B107.4 (11)
C6—C7—C8105.96 (13)H10A—C10—H10B109.6 (16)
O3—C7—C8104.56 (13)O5—C11—H11A111.3 (17)
C8—C7—C10110.58 (13)O5—C11—H11B104.1 (12)
C6—C7—C10112.49 (13)O5—C11—H11C108.2 (13)
N2—C8—C7113.22 (14)H11A—C11—H11B109 (2)
O4—C9—O5123.38 (14)H11A—C11—H11C113 (2)
O5—C9—C10111.52 (14)H11B—C11—H11C111 (2)
C11—O5—C9—O41.0 (3)C4—C5—C6—C10.5 (3)
C11—O5—C9—C10179.32 (17)C4—C5—C6—C7177.10 (16)
O1—N1—C1—C291.99 (19)C1—C6—C7—O315.3 (2)
O1—N1—C1—C686.4 (2)C1—C6—C7—C898.52 (18)
O2—N1—C1—C284.7 (2)C1—C6—C7—C10140.54 (16)
O2—N1—C1—C696.86 (19)C5—C6—C7—O3168.49 (14)
N3—N2—C8—C778.29 (18)C5—C6—C7—C877.74 (18)
N1—C1—C2—C3177.75 (16)C5—C6—C7—C1043.21 (19)
C6—C1—C2—C30.6 (3)O3—C7—C8—N273.41 (17)
N1—C1—C6—C5177.43 (15)C6—C7—C8—N2167.29 (14)
N1—C1—C6—C71.1 (2)C10—C7—C8—N245.12 (19)
C2—C1—C6—C50.8 (2)O3—C7—C10—C969.34 (17)
C2—C1—C6—C7177.19 (15)C6—C7—C10—C957.34 (19)
C1—C2—C3—C40.0 (3)C8—C7—C10—C9175.59 (14)
C2—C3—C4—C50.3 (3)O4—C9—C10—C719.8 (2)
C3—C4—C5—C60.1 (3)O5—C9—C10—C7160.54 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.825 (19)2.30 (2)2.9439 (16)135.5 (18)
O3—H3O···N2i0.825 (19)2.27 (2)2.9193 (18)135.6 (18)
C10—H10B···O4ii0.95 (2)2.557 (19)3.350 (2)141.0 (15)
C11—H11B···O1iii0.95 (3)2.57 (2)3.268 (3)130.9 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H12N4O5
Mr280.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)9.4772 (11), 14.0710 (12), 10.1861 (12)
β (°) 110.496 (13)
V3)1272.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8743, 2451, 1587
Rint0.074
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 0.87
No. of reflections2451
No. of parameters230
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: EXPOSE in IPDS Software (Stoe & Cie, 2000), CELL in IPDS Software (Stoe & Cie, 2000), INTEGRATE in IPDS Software (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.825 (19)2.30 (2)2.9439 (16)135.5 (18)
O3—H3O···N2i0.825 (19)2.27 (2)2.9193 (18)135.6 (18)
C10—H10B···O4ii0.95 (2)2.557 (19)3.350 (2)141.0 (15)
C11—H11B···O1iii0.95 (3)2.57 (2)3.268 (3)130.9 (16)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was partially financed by the Swiss National Science Foundation.

References

First citationAlazard, J.-P., Millet-Paillusson, C., Guenard, D. & Thal, C. (1996). Bull. Soc. Chim. Fr. 133, 251–266.  CAS Google Scholar
First citationBaudoin, O., Claveau, F., Thoret, S., Herrbach, A., Guenard, D. & Gueritte, F. (2002). Bioorg. Med. Chem. 10, 3395–3400.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBonneau, A.-L. R., Robert, N., Hoarau, C., Baudoin, O. & Marsais, F. (2007). Org. Biomol. Chem. 5, 175–183.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDecor, A., Monse, B., Martin, M.-T., Chiaroni, A., Thoret, S., Guenard, D., Gueritte, F. & Baudoin, O. (2006). Bioorg. Med. Chem. 14, 2314–2332.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDupont, C., Guenard, D., Tchertanov, L., Thoret, S. & Gueritte, F. (1999). Bioorg. Med. Chem. 7, 2961–2969.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDupont, C. D., Guenard, C., Thal, C., Thoret, S. & Gueritte, F. (2000). Tetrahedron Lett. 41, 5853–5856.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhosez, L., Franc, C., Denonne, F., Cuisinier, C. & Touillaux, R. (2001). Can. J. Chem. 79, 1827–1839.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukaiyama, T., Banno, K. & Narasaka, K. (1974). J. Am. Chem. Soc. 96, 7503–7509.  CrossRef CAS Web of Science Google Scholar
First citationRubio, M. B. & Bornmann, W. G. (2001). Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationVallat, O. (2004). PhD thesis, Université de Neuchâtel, Switzerland.  Google Scholar
First citationVallat, O., Buciumas, A.-M., Neels, A., Stoeckli-Evans, H. & Neier, R. (2009). In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o396-o397
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds