metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m192-m193

fac-[N,N′-Bis(3-chloro-2-fluoro­benzyl­­idene)ethyl­enedi­amine]bromido­tri­carbonyl­rhenium(I)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 1 January 2009; accepted 9 January 2009; online 14 January 2009)

In the title compound, [ReBr(C16H12Cl2F2N2)(CO)3], the Re atom is in a slightly distorted octa­hedral coordination environment with the three carbonyl ligands having a fac configuration. The diimine ligand is equatorial and is bonded to the Re centre in an N,N′-bidentate chelating fashion, with a bite angle of 77.7 (2)°. The dihedral angle between the two benzene rings is 88.7 (6)°. In the crystal structure, there are F⋯O [2.856 (9) Å], Cl⋯C [3.150 (8) Å] and O⋯C [2.984 (10) Å] contacts which are shorter than the sum of the van der Waals radii for these atoms. In addition, symmetry-related mol­ecules are linked via inter­molecular C—H⋯O, C—H⋯Br and the F⋯O inter­actions into one-dimensional chains extending along the a axis. The crystal structure is further stabilized by inter­molecular ππ inter­actions [centroid–centroid distance = 3.571 (5) Å].

Related literature

For values of standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see, for example: Kia et al. (2007[Kia, R., Kalman, A. & Deak, A. (2007). Polyhedron, 27, 1711-1716.]). For backgroud to the applications of rhenium tricarbonyl diimine complexes, see, for example: Lee (1987[Lee, A. J. (1987). Chem. Rev. 87, 711-743.]); Farrell & Vlcek (2000[Farrell, I. R. & Vlcek, Jr (2000). Coord. Chem. Rev. 208, 87-101.]); Collin & Sauvage (1989[Collin, J. P. & Sauvage, J. P. (1989). Chem. Rev. 93, 245-268.]); Balzani et al. (1996[Balzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. (1996). Chem. Rev. 96, 759-833.]).

[Scheme 1]

Experimental

Crystal data
  • [ReBr(C16H12Cl2F2N2)(CO)3]

  • Mr = 691.32

  • Triclinic, [P \overline 1]

  • a = 7.3238 (3) Å

  • b = 12.3077 (4) Å

  • c = 13.1984 (5) Å

  • α = 116.504 (2)°

  • β = 99.707 (2)°

  • γ = 90.404 (2)°

  • V = 1044.84 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.03 mm−1

  • T = 100.0 (1) K

  • 0.32 × 0.12 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.170, Tmax = 0.569

  • 33300 measured reflections

  • 9014 independent reflections

  • 7668 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.154

  • S = 1.08

  • 9014 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 4.36 e Å−3

  • Δρmin = −2.86 e Å−3

Table 1
Selected geometric parameters (Å, °)

Re1—C1 1.898 (7)
Re1—C3 1.911 (8)
Re1—C2 1.918 (7)
Re1—N2 2.190 (6)
Re1—N1 2.211 (6)
Re1—Br1 2.6564 (7)
N2—Re1—N1 77.7 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯Br1 0.93 2.80 3.691 (7) 161
C10—H10A⋯Br1i 0.93 2.93 3.845 (7) 170
C11—H11B⋯O3i 0.97 2.48 3.264 (10) 137
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Rhenium tricarbonyl diimine complexes have been the subject of much attention, mainly because of their photophysical and photochemical properties (Lee 1987; Farrell & Vlcek 2000; Balzani et al. 1996) and their use in the photoreducetion and electroreduction of CO2 to CO (Collin & Sauvage 1989), a process of interest in the conversion and storage of solar energy. We report here the results of an X-ray structure determination of the title complex, (I).

In the title compound (I, Fig. 1), the Re atom is in a slightly distorted octahedral coordination environment. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to related structures (Kia et al., 2007). The three carbonyl ligands bonded to the Re atom are arranged in a fac configuration. The cis-equatorial bite angle [N1–Re1–N2] is 77.7 (2)°. The deviation of the Re atom from the mean plane defined by N1/N2/C2/C3 is 0.04 (4) Å. Due to the π-donor character of the bromine ligand, the length of the axial Re–C bond is slightly shorter than the values of the equatorial Re–C bonds (Table 1). In spite of the sp2 hybrizidation of the donor nitrogen atoms of the diimine ligand, the ReN2C2 five-membered chelate ring is significantly puckered which is reflected in the deviation from 120° for the Re1–N1–C10 and Re1–N2–C13 angles being 135.2 (5)° and 131.4 (6)°, respectively. Some interesting features of the crystal structure are the F1···O2 [2.860 (12) Å; symmetry code: -1 + x, y, z], O2···C18 [2.981 (14); symmetry code: 1 - x, 1 - y, -z] and Cl2···C13 [3.143 (12) Å; symmetry code: 1 + x, y, z] contacts which are shorter than the sum of the van der Waals radii of these atoms. In addition, symmetry-related molecules are linked via intermolecular C—H···O, C—H···Br and C—F···O interactions into 1-D extended chains along the a-axis (Table 2, Fig. 2). The crystal structure is further stabilized by intramolecular C—H···Br and intermolecular π-π interactions [Cg1···Cg1 = 3.571 (5) Å; symmetry code: -x, -y, -z; Cg1 is the centroid of the C4–C9 benzene ring].

Related literature top

For values of standard bond lengths, see Allen et al. (1987). For related structures, see, for example: Kia et al. (2007). For backgroud to the applications of rhenium tricarbonyl diimine complexes, see, for example: Lee (1987); Farrell & Vlcek (2000); Collin & Sauvage (1989); Balzani et al. (1996).

Experimental top

The synthetic method has been described earlier (Kia et al., 2007), except that N,N'-bis(3-chloro-2-fluoro-benzylidene) ethylenediamine ligand and [Re(CO)5Br] were used as starting materials. Single crystals suitable for X-ray diffraction were obtained by evaporation of an dichloromethane/toluene (4/1 ratio) solution at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically and refined in a riding approximation model with C–H = 0.93-0.97 Å and Uiso (H) = 1.2 Ueq (C). The highest peak (4.36 eÅ-3) is located 1.76 Å from Cl1 and the deepest hole (-2.86 eÅ-3) is located 1.17 Å from C15.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular interaction is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c-axis showing a 1-D extended chain along the a-axis. Intermolecular interactions are shown as dashed lines.
fac-[N,N'-Bis(3-chloro-2- fluorobenzylidene)ethylenediamine]bromidotricarbonylrhenium(I) top
Crystal data top
[ReBr(C16H12Cl2F2N2)(CO)3]Z = 2
Mr = 691.32F(000) = 652
Triclinic, P1Dx = 2.197 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3238 (3) ÅCell parameters from 9990 reflections
b = 12.3077 (4) Åθ = 3.1–36.5°
c = 13.1984 (5) ŵ = 8.03 mm1
α = 116.504 (2)°T = 100 K
β = 99.707 (2)°Block, yellow
γ = 90.404 (2)°0.32 × 0.12 × 0.07 mm
V = 1044.84 (7) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9014 independent reflections
Radiation source: fine-focus sealed tube7668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 35.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1110
Tmin = 0.170, Tmax = 0.569k = 1919
33300 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.043P)2 + 25.3509P]
where P = (Fo2 + 2Fc2)/3
9014 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 4.36 e Å3
0 restraintsΔρmin = 2.86 e Å3
Crystal data top
[ReBr(C16H12Cl2F2N2)(CO)3]γ = 90.404 (2)°
Mr = 691.32V = 1044.84 (7) Å3
Triclinic, P1Z = 2
a = 7.3238 (3) ÅMo Kα radiation
b = 12.3077 (4) ŵ = 8.03 mm1
c = 13.1984 (5) ÅT = 100 K
α = 116.504 (2)°0.32 × 0.12 × 0.07 mm
β = 99.707 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9014 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7668 reflections with I > 2σ(I)
Tmin = 0.170, Tmax = 0.569Rint = 0.030
33300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.043P)2 + 25.3509P]
where P = (Fo2 + 2Fc2)/3
9014 reflectionsΔρmax = 4.36 e Å3
265 parametersΔρmin = 2.86 e Å3
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.41651 (4)0.44687 (2)0.17913 (2)0.01814 (7)
Br10.59914 (10)0.30823 (6)0.26094 (6)0.02132 (13)
Cl10.2702 (4)0.0324 (3)0.2767 (2)0.0453 (6)
Cl21.1905 (3)0.8265 (2)0.5091 (2)0.0379 (5)
F10.2477 (7)0.1706 (5)0.0492 (5)0.0332 (10)
F20.8904 (7)0.6865 (5)0.5305 (5)0.0304 (10)
O10.1897 (9)0.6185 (6)0.1033 (7)0.0365 (14)
O20.4182 (9)0.2812 (6)0.0766 (5)0.0291 (11)
O30.7869 (8)0.5564 (6)0.1675 (5)0.0293 (11)
N10.1581 (9)0.3695 (6)0.1978 (5)0.0216 (10)
N20.4113 (9)0.5578 (6)0.3623 (5)0.0215 (10)
C10.2797 (10)0.5521 (7)0.1317 (6)0.0236 (12)
C20.4139 (10)0.3398 (7)0.0196 (6)0.0240 (12)
C30.6462 (10)0.5171 (7)0.1739 (6)0.0231 (12)
C40.0837 (11)0.1231 (7)0.0633 (7)0.0260 (13)
C50.0743 (12)0.0240 (7)0.1673 (7)0.0275 (14)
C60.0927 (13)0.0300 (7)0.1816 (7)0.0293 (15)
H6A0.10110.09740.25060.035*
C70.2454 (12)0.0175 (8)0.0925 (7)0.0304 (15)
H7A0.35650.01850.10190.036*
C80.2359 (10)0.1165 (6)0.0091 (6)0.0209 (11)
H8A0.33990.14650.06830.025*
C90.0687 (10)0.1738 (7)0.0249 (6)0.0230 (12)
C100.0427 (10)0.2764 (7)0.1340 (6)0.0237 (12)
H10A0.06810.27280.15840.028*
C110.1005 (10)0.4586 (6)0.3060 (6)0.0219 (12)
H11A0.00680.41960.32590.026*
H11B0.04910.52630.29590.026*
C120.2731 (10)0.5034 (7)0.4001 (6)0.0222 (12)
H12A0.24370.56380.47200.027*
H12B0.32180.43610.41210.027*
C130.5117 (10)0.6545 (7)0.4396 (6)0.0231 (12)
H13A0.50060.68030.51590.028*
C140.6436 (10)0.7276 (6)0.4158 (6)0.0215 (11)
C150.8330 (10)0.7421 (7)0.4645 (6)0.0237 (12)
C160.9615 (11)0.8108 (7)0.4457 (7)0.0270 (14)
C170.8965 (15)0.8671 (9)0.3764 (7)0.0369 (13)
H17A0.98090.91160.36070.044*
C180.7106 (15)0.8577 (8)0.3315 (7)0.0354 (19)
H18A0.66970.90000.28980.042*
C190.5845 (16)0.7865 (9)0.3474 (7)0.0369 (13)
H19A0.45980.77700.31300.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01889 (11)0.01916 (11)0.01800 (11)0.00236 (8)0.00407 (8)0.00967 (8)
Br10.0215 (3)0.0235 (3)0.0214 (3)0.0055 (2)0.0059 (2)0.0116 (2)
Cl10.0397 (12)0.0435 (12)0.0334 (10)0.0032 (9)0.0028 (9)0.0041 (9)
Cl20.0277 (9)0.0276 (9)0.0590 (14)0.0045 (7)0.0142 (9)0.0180 (9)
F10.025 (2)0.032 (2)0.039 (3)0.0052 (19)0.0086 (19)0.012 (2)
F20.029 (2)0.029 (2)0.040 (3)0.0031 (18)0.0048 (19)0.022 (2)
O10.033 (3)0.040 (3)0.053 (4)0.015 (3)0.012 (3)0.035 (3)
O20.035 (3)0.028 (3)0.023 (2)0.002 (2)0.008 (2)0.010 (2)
O30.027 (3)0.035 (3)0.031 (3)0.001 (2)0.006 (2)0.019 (2)
N10.024 (3)0.021 (2)0.023 (3)0.006 (2)0.008 (2)0.010 (2)
N20.022 (3)0.022 (3)0.023 (2)0.005 (2)0.007 (2)0.011 (2)
C10.023 (3)0.025 (3)0.027 (3)0.006 (2)0.004 (2)0.016 (3)
C20.023 (3)0.026 (3)0.024 (3)0.002 (2)0.006 (2)0.012 (3)
C30.023 (3)0.026 (3)0.020 (3)0.002 (2)0.003 (2)0.011 (2)
C40.027 (3)0.025 (3)0.028 (3)0.000 (3)0.009 (3)0.013 (3)
C50.031 (4)0.024 (3)0.026 (3)0.000 (3)0.006 (3)0.011 (3)
C60.040 (4)0.021 (3)0.028 (3)0.002 (3)0.011 (3)0.010 (3)
C70.031 (4)0.034 (4)0.032 (4)0.012 (3)0.012 (3)0.019 (3)
C80.020 (3)0.017 (3)0.026 (3)0.001 (2)0.003 (2)0.011 (2)
C90.024 (3)0.021 (3)0.024 (3)0.000 (2)0.008 (2)0.009 (2)
C100.021 (3)0.024 (3)0.027 (3)0.004 (2)0.008 (2)0.011 (3)
C110.022 (3)0.021 (3)0.023 (3)0.005 (2)0.007 (2)0.009 (2)
C120.023 (3)0.024 (3)0.024 (3)0.004 (2)0.009 (2)0.013 (2)
C130.024 (3)0.024 (3)0.022 (3)0.004 (2)0.006 (2)0.010 (2)
C140.026 (3)0.018 (3)0.020 (3)0.000 (2)0.005 (2)0.008 (2)
C150.023 (3)0.022 (3)0.025 (3)0.002 (2)0.006 (2)0.010 (2)
C160.027 (3)0.019 (3)0.030 (3)0.000 (2)0.009 (3)0.005 (3)
C170.052 (4)0.032 (3)0.023 (2)0.001 (3)0.010 (2)0.009 (2)
C180.060 (6)0.023 (3)0.024 (3)0.003 (3)0.004 (3)0.012 (3)
C190.052 (4)0.032 (3)0.023 (2)0.001 (3)0.010 (2)0.009 (2)
Geometric parameters (Å, º) top
Re1—C11.898 (7)C7—C81.364 (11)
Re1—C31.911 (8)C7—H7A0.9300
Re1—C21.918 (7)C8—C91.417 (10)
Re1—N22.190 (6)C8—H8A0.9300
Re1—N12.211 (6)C9—C101.476 (10)
Re1—Br12.6564 (7)C10—H10A0.9300
Cl1—C51.737 (9)C11—C121.514 (10)
Cl2—C161.711 (9)C11—H11A0.9700
F1—C41.344 (9)C11—H11B0.9700
F2—C151.347 (9)C12—H12A0.9700
O1—C11.201 (9)C12—H12B0.9700
O2—C21.153 (9)C13—C141.478 (10)
O3—C31.167 (9)C13—H13A0.9300
N1—C101.273 (10)C14—C151.401 (10)
N1—C111.494 (9)C14—C191.408 (12)
N2—C131.284 (10)C15—C161.385 (11)
N2—C121.476 (9)C16—C171.402 (13)
C4—C91.376 (11)C17—C181.372 (15)
C4—C51.384 (11)C17—H17A0.9300
C5—C61.397 (12)C18—C191.373 (13)
C6—C71.382 (13)C18—H18A0.9300
C6—H6A0.9300C19—H19A0.9300
C1—Re1—C391.3 (3)C4—C9—C8117.8 (7)
C1—Re1—C288.3 (3)C4—C9—C10117.9 (7)
C3—Re1—C284.4 (3)C8—C9—C10124.0 (7)
C1—Re1—N294.3 (3)N1—C10—C9126.0 (7)
C3—Re1—N298.8 (3)N1—C10—H10A117.0
C2—Re1—N2175.8 (3)C9—C10—H10A117.0
C1—Re1—N190.7 (3)N1—C11—C12107.0 (6)
C3—Re1—N1176.1 (3)N1—C11—H11A110.3
C2—Re1—N199.0 (3)C12—C11—H11A110.3
N2—Re1—N177.7 (2)N1—C11—H11B110.3
C1—Re1—Br1175.6 (2)C12—C11—H11B110.3
C3—Re1—Br190.5 (2)H11A—C11—H11B108.6
C2—Re1—Br195.9 (2)N2—C12—C11107.3 (6)
N2—Re1—Br181.48 (16)N2—C12—H12A110.3
N1—Re1—Br187.24 (16)C11—C12—H12A110.3
C10—N1—C11115.3 (6)N2—C12—H12B110.3
C10—N1—Re1135.2 (5)C11—C12—H12B110.3
C11—N1—Re1109.0 (4)H12A—C12—H12B108.5
C13—N2—C12117.3 (6)N2—C13—C14124.7 (7)
C13—N2—Re1131.3 (5)N2—C13—H13A117.7
C12—N2—Re1111.3 (4)C14—C13—H13A117.7
O1—C1—Re1178.3 (7)C15—C14—C19118.4 (7)
O2—C2—Re1175.8 (7)C15—C14—C13119.6 (6)
O3—C3—Re1177.7 (7)C19—C14—C13122.0 (7)
F1—C4—C9119.6 (7)F2—C15—C16119.6 (7)
F1—C4—C5118.3 (7)F2—C15—C14118.7 (6)
C9—C4—C5122.1 (8)C16—C15—C14121.7 (7)
C4—C5—C6119.1 (8)C15—C16—C17118.0 (8)
C4—C5—Cl1119.7 (7)C15—C16—Cl2119.4 (7)
C6—C5—Cl1121.2 (6)C17—C16—Cl2122.6 (7)
C7—C6—C5119.4 (7)C18—C17—C16121.2 (9)
C7—C6—H6A120.3C18—C17—H17A119.4
C5—C6—H6A120.3C16—C17—H17A119.4
C8—C7—C6121.2 (8)C17—C18—C19120.6 (9)
C8—C7—H7A119.4C17—C18—H18A119.7
C6—C7—H7A119.4C19—C18—H18A119.7
C7—C8—C9120.4 (7)C18—C19—C14120.1 (10)
C7—C8—H8A119.8C18—C19—H19A120.0
C9—C8—H8A119.8C14—C19—H19A120.0
C1—Re1—N1—C1095.2 (8)C7—C8—C9—C10176.2 (7)
C2—Re1—N1—C106.9 (8)C11—N1—C10—C9178.1 (7)
N2—Re1—N1—C10170.6 (8)Re1—N1—C10—C911.1 (12)
Br1—Re1—N1—C1088.7 (7)C4—C9—C10—N1142.2 (8)
C1—Re1—N1—C1176.0 (5)C8—C9—C10—N144.3 (12)
C2—Re1—N1—C11164.3 (5)C10—N1—C11—C12140.9 (7)
N2—Re1—N1—C1118.2 (4)Re1—N1—C11—C1246.0 (6)
Br1—Re1—N1—C11100.1 (4)C13—N2—C12—C11141.5 (7)
C1—Re1—N2—C1381.1 (7)Re1—N2—C12—C1141.9 (6)
C3—Re1—N2—C1310.9 (7)N1—C11—C12—N258.1 (7)
N1—Re1—N2—C13170.9 (7)C12—N2—C13—C14173.8 (6)
Br1—Re1—N2—C13100.1 (7)Re1—N2—C13—C1410.4 (11)
C1—Re1—N2—C12102.9 (5)N2—C13—C14—C15119.2 (8)
C3—Re1—N2—C12165.1 (5)N2—C13—C14—C1962.3 (11)
N1—Re1—N2—C1213.2 (4)C19—C14—C15—F2179.7 (7)
Br1—Re1—N2—C1275.9 (4)C13—C14—C15—F21.2 (10)
F1—C4—C5—C6177.1 (7)C19—C14—C15—C160.9 (11)
C9—C4—C5—C63.0 (12)C13—C14—C15—C16179.4 (7)
F1—C4—C5—Cl12.0 (10)F2—C15—C16—C17179.9 (7)
C9—C4—C5—Cl1177.9 (6)C14—C15—C16—C170.5 (11)
C4—C5—C6—C70.9 (12)F2—C15—C16—Cl21.4 (10)
Cl1—C5—C6—C7180.0 (7)C14—C15—C16—Cl2179.2 (6)
C5—C6—C7—C80.2 (13)C15—C16—C17—C182.0 (12)
C6—C7—C8—C90.8 (12)Cl2—C16—C17—C18176.7 (7)
F1—C4—C9—C8176.3 (7)C16—C17—C18—C194.0 (14)
C5—C4—C9—C83.9 (11)C17—C18—C19—C143.6 (13)
F1—C4—C9—C102.4 (11)C15—C14—C19—C181.2 (12)
C5—C4—C9—C10177.8 (7)C13—C14—C19—C18177.3 (8)
C7—C8—C9—C42.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br10.932.803.691 (7)161
C10—H10A···Br1i0.932.933.845 (7)170
C11—H11B···O3i0.972.483.264 (10)137
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[ReBr(C16H12Cl2F2N2)(CO)3]
Mr691.32
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3238 (3), 12.3077 (4), 13.1984 (5)
α, β, γ (°)116.504 (2), 99.707 (2), 90.404 (2)
V3)1044.84 (7)
Z2
Radiation typeMo Kα
µ (mm1)8.03
Crystal size (mm)0.32 × 0.12 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.170, 0.569
No. of measured, independent and
observed [I > 2σ(I)] reflections
33300, 9014, 7668
Rint0.030
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.154, 1.08
No. of reflections9014
No. of parameters265
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.043P)2 + 25.3509P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)4.36, 2.86

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Re1—C11.898 (7)Re1—N22.190 (6)
Re1—C31.911 (8)Re1—N12.211 (6)
Re1—C21.918 (7)Re1—Br12.6564 (7)
N2—Re1—N177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br10.93002.80003.691 (7)161.00
C10—H10A···Br1i0.93002.93003.845 (7)170.00
C11—H11B···O3i0.97002.48003.264 (10)137.00
Symmetry code: (i) x1, y, z.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBalzani, V., Juris, A., Venturi, M., Campagna, S. & Serroni, S. (1996). Chem. Rev. 96, 759–833.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollin, J. P. & Sauvage, J. P. (1989). Chem. Rev. 93, 245–268.  CAS Google Scholar
First citationFarrell, I. R. & Vlcek, Jr (2000). Coord. Chem. Rev. 208, 87–101.  Google Scholar
First citationKia, R., Kalman, A. & Deak, A. (2007). Polyhedron, 27, 1711–1716.  Web of Science CSD CrossRef Google Scholar
First citationLee, A. J. (1987). Chem. Rev. 87, 711-743.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m192-m193
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds