organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Fluoro­benzoic acid–4-acetyl­pyridine (1/1) at 100 K

aWestCHEM, Department of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, and bDepartment of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: lynnet@chem.gla.ac.uk

(Received 7 January 2009; accepted 19 January 2009; online 23 January 2009)

In the title compound, C7H5FO2·C7H7NO, a moderate-strength hydrogen bond is formed between the carboxyl group of one mol­ecule and the pyridine N atom of the other. The benzoic acid mol­ecule is observed to be disordered over two positions with the second orientation only 4% occupied. This disorder is also reflected in the presence of diffuse scattering in the diffraction pattern.

Related literature

For the structure of pure m-fluoro­benzoic acid, see: Taga et al. (1985[Taga, T., Yamamoto, N. & Osaki, K. (1985). Acta Cryst. C41, 153-154.]). For standard bond-length data, see: Allen et al. (1992[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1992). International Tables for Crystallography, Vol. C, pp. 685-706. Dordrecht: Kluwer Academic Publishers.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5FO2·C7H7NO

  • Mr = 261.25

  • Monoclinic, P 21 /n

  • a = 10.0498 (11) Å

  • b = 10.5779 (8) Å

  • c = 11.5045 (8) Å

  • β = 92.026 (4)°

  • V = 1222.23 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 (2) K

  • 0.3 × 0.25 × 0.2 mm

Data collection
  • Rigaku R-AXIS RAPID IP image-plate diffractometer

  • Absorption correction: none

  • 15130 measured reflections

  • 2787 independent reflections

  • 1888 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.099

  • S = 1.05

  • 2787 reflections

  • 220 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯N11 0.97 (2) 1.68 (2) 2.6428 (14) 176.3 (18)
C19—H19C⋯O10i 0.96 (2) 2.57 (2) 3.385 (2) 142.5 (14)
C13—H13⋯F1ii 0.98 (2) 2.63 (2) 3.3870 (16) 134.3 (12)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear incorporating D*TREK and FSPROCESS. Rigaku, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure of a molecular complex of 3-fluorobenzoic acid with 4-acetylpyridine (C7H5O2F C7H7NO) at 100 K is reported (Fig. 1). The molecular geometry of the 4-acetylpyridine is generally unremarkable. However the F atom in the 3-fluorobenzoic acid molecule is seen to be disordered over two positions in a 96:4% ratio. The majority component is found to lie on the same side of the molecule as the carbonyl CO and this is consistent with the reported crystal structure of the pure material (Taga et al., 1985). The minority component was identified using a Fourier difference map which shows a peak height of greater than 1 electron bonded to C6, at a distance longer than characteristic for a C—H bond. The inclusion of a disorder model even at the 4% level improves the model significantly. Diffuse scattering was also observed in the diffraction images supporting the presence of disorder in this material. The minor component F atom was modelled isotropically and with constraints on the C—F distance. The thermal ellipsoids of both the carboxylic acid group and the methyl-keto group are slightly larger than those of their corresponding aromatic rings, indicating the possible presence of a small amount of libration in these groups.

A moderate strength hydrogen bond [O···N = 2.6428 (14) Å] is formed between the carboxylic acid group and the pyridine N atom. There is no indication of disorder of the carboxylic H atom at this temperature although the H atom isotropic thermal parameter is large as is often observed in the presence of a hydrogen bond. The two molecules lie almost exactly co-planar with each other.

These dimers are packed in an offset planar arrangement, as shown in Figs. 2 and 3. All the molecules are approximately co-planar with the (103) plane. The reason that this offset occurs may be due to the optimization of two close contacts from the methyl group. These contacts comprise a C—H···O interaction between the methyl group of the 4-acetylpyridine and the CO of the carboxylic acid between planes, which induces an attractive tilt upwards in the acetylpyridine towards this acid molecule. Equally, the C—H···F interaction within the plane causes an attractive tilt in the adjacent molecule, giving rise to this offset packing arrangement.

Related literature top

For the structure of pure m-fluorobenzoic acid, see: Taga et al. (1985). For standard bond-length data, see: Allen et al. (1992).

Experimental top

Crystals of the title material were grown by slow evaporation of solvent from a 1:1 solution of the two component molecules in ethanol.

Refinement top

All non-H atoms were refined anisotropically except that of the disordered F atom where the minor component was left isotropic. The C—F distances for the minor and major components were constrained to be similar. All H atoms were identified in the difference map, and were allowed to refine isotropically with the exception of the disordered positions where they were fixed geometrically and refined as riding groups. The proportion of disorder was obtained by identifying the value which gave the lowest R-factor.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title complex with displacement ellipsoids drawn at the 50% probability level. The minor disordered component is represented by F1a and H2a. The intermolecular hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. Packing figure viewed along the b axis. The tilted layer structure can be clearly seen and close intermolecular C—H···F and C—H···O distances are represented by dotted lines.
[Figure 3] Fig. 3. Packing view to illustrate the offset from planarity of the various units. This figure shows exactly the same molecules as in Fig. 2, but rotated by 90°.
3-Fluorobenzoic acid–4-acetylpyridine (1/1) top
Crystal data top
C7H5FO2·C7H7NOF(000) = 544
Mr = 261.25Dx = 1.42 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10265 reflections
a = 10.0498 (11) Åθ = 3–28°
b = 10.5779 (8) ŵ = 0.11 mm1
c = 11.5045 (8) ÅT = 100 K
β = 92.026 (4)°Block, colourless
V = 1222.23 (18) Å30.3 × 0.25 × 0.2 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP image-plate
diffractometer
Rint = 0.031
ω scansθmax = 27.5°, θmin = 3.3°
15130 measured reflectionsh = 1313
2787 independent reflectionsk = 1311
1888 reflections with I > 2σ(I)l = 1314
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0573P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.23 e Å3
2787 reflectionsΔρmin = 0.21 e Å3
220 parameters
Crystal data top
C7H5FO2·C7H7NOV = 1222.23 (18) Å3
Mr = 261.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0498 (11) ŵ = 0.11 mm1
b = 10.5779 (8) ÅT = 100 K
c = 11.5045 (8) Å0.3 × 0.25 × 0.2 mm
β = 92.026 (4)°
Data collection top
Rigaku R-AXIS RAPID IP image-plate
diffractometer
1888 reflections with I > 2σ(I)
15130 measured reflectionsRint = 0.031
2787 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
2787 reflectionsΔρmin = 0.21 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.86852 (8)0.91451 (8)0.42397 (7)0.0336 (2)0.96
C20.80192 (13)0.81276 (12)0.46507 (11)0.0243 (3)0.96
C2A0.80192 (13)0.81276 (12)0.46507 (11)0.0243 (3)0.04
H2A0.84810.88200.43730.029*0.04
C30.67564 (13)0.83201 (12)0.50485 (11)0.0220 (3)
H30.6362 (14)0.9146 (14)0.5003 (11)0.024 (4)*
C40.60718 (12)0.72721 (12)0.54569 (10)0.0203 (3)
C50.66565 (13)0.60822 (12)0.54596 (10)0.0229 (3)
H50.6176 (15)0.5344 (14)0.5736 (12)0.029 (4)*
C60.79390 (13)0.59376 (13)0.50555 (11)0.0251 (3)0.96
H60.83340.51420.50630.030*0.96
C6A0.79390 (13)0.59376 (13)0.50555 (11)0.0251 (3)0.04
F1A0.8666 (19)0.4867 (15)0.5104 (17)0.033 (4)*0.04
C70.86291 (14)0.69651 (13)0.46440 (11)0.0256 (3)
H70.9528 (16)0.6854 (14)0.4351 (12)0.027 (4)*
C80.46965 (13)0.74749 (11)0.58875 (10)0.0211 (3)
O90.41636 (10)0.64448 (9)0.63191 (8)0.0299 (2)
H90.325 (2)0.6594 (19)0.6527 (17)0.068 (6)*
O100.41357 (9)0.84903 (9)0.58340 (8)0.0287 (2)
N110.16961 (11)0.68081 (10)0.69676 (9)0.0235 (3)
C120.09586 (13)0.58338 (13)0.73125 (11)0.0235 (3)
H120.1365 (15)0.4988 (14)0.7270 (11)0.026 (4)*
C130.11730 (14)0.79700 (13)0.70272 (11)0.0254 (3)
H130.1748 (15)0.8649 (15)0.6758 (12)0.030 (4)*
C140.00901 (13)0.81965 (13)0.74237 (11)0.0240 (3)
H140.0396 (15)0.9059 (16)0.7441 (13)0.033 (4)*
C150.03229 (13)0.59762 (12)0.77072 (10)0.0213 (3)
H150.0813 (14)0.5233 (14)0.7917 (12)0.026 (4)*
C160.08659 (12)0.71782 (12)0.77594 (10)0.0208 (3)
C170.22611 (13)0.74106 (12)0.81607 (10)0.0222 (3)
O180.26975 (10)0.84818 (9)0.81733 (9)0.0327 (3)
C190.30654 (14)0.63097 (14)0.85455 (13)0.0282 (3)
H19A0.399 (2)0.6527 (17)0.8522 (15)0.049 (5)*
H19B0.2946 (17)0.5564 (17)0.8057 (14)0.045 (5)*
H19C0.2765 (17)0.6106 (17)0.9328 (15)0.050 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0277 (5)0.0260 (5)0.0480 (5)0.0030 (3)0.0144 (4)0.0045 (4)
C20.0239 (7)0.0238 (7)0.0255 (7)0.0041 (5)0.0044 (5)0.0021 (5)
C2A0.0239 (7)0.0238 (7)0.0255 (7)0.0041 (5)0.0044 (5)0.0021 (5)
C30.0236 (7)0.0210 (7)0.0215 (6)0.0006 (5)0.0014 (5)0.0009 (5)
C40.0203 (6)0.0220 (7)0.0186 (6)0.0006 (5)0.0003 (5)0.0013 (5)
C50.0258 (7)0.0223 (7)0.0207 (6)0.0009 (5)0.0013 (5)0.0016 (5)
C60.0265 (7)0.0232 (7)0.0257 (6)0.0045 (5)0.0031 (5)0.0007 (5)
C6A0.0265 (7)0.0232 (7)0.0257 (6)0.0045 (5)0.0031 (5)0.0007 (5)
C70.0215 (7)0.0299 (7)0.0255 (7)0.0032 (5)0.0047 (5)0.0010 (5)
C80.0203 (6)0.0209 (7)0.0221 (6)0.0018 (5)0.0008 (5)0.0012 (5)
O90.0223 (5)0.0251 (5)0.0428 (6)0.0002 (4)0.0101 (4)0.0039 (4)
O100.0251 (5)0.0224 (5)0.0391 (5)0.0015 (4)0.0081 (4)0.0013 (4)
N110.0207 (5)0.0241 (6)0.0259 (6)0.0014 (4)0.0029 (4)0.0015 (4)
C120.0235 (7)0.0224 (7)0.0247 (7)0.0011 (5)0.0029 (5)0.0003 (5)
C130.0254 (7)0.0230 (7)0.0278 (7)0.0033 (6)0.0015 (5)0.0021 (5)
C140.0256 (7)0.0189 (7)0.0275 (7)0.0002 (5)0.0006 (5)0.0003 (5)
C150.0220 (6)0.0189 (7)0.0231 (6)0.0010 (5)0.0018 (5)0.0009 (5)
C160.0197 (6)0.0227 (7)0.0199 (6)0.0000 (5)0.0018 (5)0.0021 (5)
C170.0211 (7)0.0225 (7)0.0228 (6)0.0018 (5)0.0013 (5)0.0037 (5)
O180.0270 (5)0.0236 (5)0.0477 (6)0.0054 (4)0.0055 (4)0.0027 (4)
C190.0205 (7)0.0279 (8)0.0364 (8)0.0003 (6)0.0048 (6)0.0001 (6)
Geometric parameters (Å, º) top
F1—C21.3611 (15)N11—C131.3394 (17)
C2—C71.3740 (19)C12—C151.3888 (18)
C2—C31.3794 (18)C12—H120.985 (15)
C3—C41.3949 (18)C13—C141.3848 (19)
C3—H30.960 (15)C13—H130.979 (16)
C4—C51.3890 (18)C14—C161.3923 (18)
C4—C81.5001 (18)C14—H140.963 (16)
C5—C61.3940 (18)C15—C161.3858 (18)
C5—H50.978 (15)C15—H150.963 (15)
C6—C71.3819 (19)C16—C171.5118 (17)
C6—H60.9300C17—O181.2153 (15)
C7—H70.982 (16)C17—C191.4935 (19)
C8—O101.2135 (15)C19—H19A0.955 (19)
C8—O91.3189 (15)C19—H19B0.978 (17)
O9—H90.97 (2)C19—H19C0.964 (18)
N11—C121.3378 (17)
F1—C2—C7118.74 (11)N11—C12—H12116.7 (9)
F1—C2—C3117.91 (12)C15—C12—H12120.4 (9)
C7—C2—C3123.35 (12)N11—C13—C14122.79 (12)
C2—C3—C4117.71 (12)N11—C13—H13114.8 (9)
C2—C3—H3119.9 (8)C14—C13—H13122.4 (9)
C4—C3—H3122.3 (8)C13—C14—C16119.10 (12)
C5—C4—C3120.48 (12)C13—C14—H14117.9 (9)
C5—C4—C8121.57 (11)C16—C14—H14123.0 (9)
C3—C4—C8117.95 (11)C16—C15—C12119.00 (12)
C4—C5—C6119.65 (12)C16—C15—H15122.1 (9)
C4—C5—H5120.7 (9)C12—C15—H15118.8 (9)
C6—C5—H5119.6 (9)C15—C16—C14118.20 (12)
C7—C6—C5120.60 (13)C15—C16—C17122.23 (11)
C7—C6—H6119.7C14—C16—C17119.57 (12)
C5—C6—H6119.7O18—C17—C19121.61 (12)
C2—C7—C6118.20 (12)O18—C17—C16119.62 (12)
C2—C7—H7121.6 (9)C19—C17—C16118.77 (11)
C6—C7—H7120.2 (9)C17—C19—H19A109.9 (11)
O10—C8—O9123.80 (12)C17—C19—H19B112.3 (10)
O10—C8—C4122.79 (11)H19A—C19—H19B108.4 (14)
O9—C8—C4113.41 (11)C17—C19—H19C107.2 (11)
C8—O9—H9111.0 (12)H19A—C19—H19C110.6 (14)
C12—N11—C13117.97 (11)H19B—C19—H19C108.4 (14)
N11—C12—C15122.91 (12)
F1—C2—C3—C4179.30 (11)C3—C4—C8—O9176.16 (11)
C7—C2—C3—C40.3 (2)C13—N11—C12—C151.11 (19)
C2—C3—C4—C50.14 (18)C12—N11—C13—C140.25 (19)
C2—C3—C4—C8179.83 (11)N11—C13—C14—C161.1 (2)
C3—C4—C5—C60.28 (18)N11—C12—C15—C160.61 (19)
C8—C4—C5—C6179.75 (11)C12—C15—C16—C140.72 (18)
C4—C5—C6—C70.5 (2)C12—C15—C16—C17179.02 (11)
F1—C2—C7—C6179.53 (11)C13—C14—C16—C151.51 (19)
C3—C2—C7—C60.1 (2)C13—C14—C16—C17178.24 (11)
C5—C6—C7—C20.3 (2)C15—C16—C17—O18178.87 (11)
C5—C4—C8—O10175.77 (11)C14—C16—C17—O180.87 (18)
C3—C4—C8—O104.20 (19)C15—C16—C17—C191.77 (18)
C5—C4—C8—O93.87 (17)C14—C16—C17—C19178.49 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···N110.97 (2)1.68 (2)2.6428 (14)176.3 (18)
C19—H19C···O10i0.96 (2)2.57 (2)3.385 (2)142.5 (14)
C13—H13···F1ii0.98 (2)2.63 (2)3.3870 (16)134.3 (12)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H5FO2·C7H7NO
Mr261.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.0498 (11), 10.5779 (8), 11.5045 (8)
β (°) 92.026 (4)
V3)1222.23 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerRigaku R-AXIS RAPID IP image-plate
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15130, 2787, 1888
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.099, 1.05
No. of reflections2787
No. of parameters220
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···N110.97 (2)1.68 (2)2.6428 (14)176.3 (18)
C19—H19C···O10i0.96 (2)2.57 (2)3.385 (2)142.5 (14)
C13—H13···F1ii0.98 (2)2.63 (2)3.3870 (16)134.3 (12)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank Rigaku for the loan of the diffrac­tom­eter.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1992). International Tables for Crystallography, Vol. C, pp. 685–706. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear incorporating D*TREK and FSPROCESS. Rigaku, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaga, T., Yamamoto, N. & Osaki, K. (1985). Acta Cryst. C41, 153–154.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds