organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­pyridine-3-carboxamide

aInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: tong@sxu.edu.cn

(Received 14 January 2009; accepted 17 January 2009; online 23 January 2009)

In the crystal structure of the title compound, C6H5ClN2O, the dihedral angle between the pyridine ring and the carboxamine group is 63.88 (8)°. Inter­molecular N—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network.

Related literature

Details of applications of the title compound can be found in: Oda et al. (1993[Oda, M., Sakaki, T., Sasaki, N., Nonaka, H., Yamagishi, K. & Tomita, H. (1993). J. Pestic. Sci. 18, 49-57.]); Qin et al. (2001[Qin, Z., Jennings, M. C. & Puddephatt, R. J. (2001). Inorg. Chem. 40, 6220-6228.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5ClN2O

  • Mr = 156.57

  • Monoclinic, P 21 /n

  • a = 6.980 (5) Å

  • b = 13.627 (9) Å

  • c = 7.108 (5) Å

  • β = 91.82 (5)°

  • V = 675.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.868, Tmax = 0.909

  • 2716 measured reflections

  • 1188 independent reflections

  • 1083 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.11

  • 1188 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.21 3.003 (3) 154
N2—H2B⋯Oii 0.86 2.17 3.015 (3) 168
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure of 2-chloropyridine-3-carboxamide has attracted us owing to its fungicidal activities (Oda et al., 1993) and its application in coordination chemistry (Qin et al., 2001). The dihedral angles formed by the pyridine ring and the carboxamine group amount to 63.88 (8)° (Fig. 1). The molecules are connected via intermolecular N—H···N and N—H···O hydrogen bonding into layers, with H···N distances of 2.21 and O···H distances of 2.17 Å (Fig. 2 and Tab. 1).

Related literature top

Related literature on the importance of the title compound can be found in: Oda et al. (1993); Qin et al. (2001).

Experimental top

Ammonia (10 ml, 66 mmol, 25%) was added slowly to a solution of 2-chloropyridine-3-carbonyl chloride (4.0 g, 22 mmol) in THF (20 ml) at 0°C. The reaction mixture was allowed to warm up to room temperature and stirred for 1.5 h. The resulting mixture was dried under vacuum and washed with two 20 ml portions of THF. Then the solution was dried over anhydrous magnesium sulfate. The solvent was removed by vacuum, and the product was collected, yield: 1.93 g, 56%; m.p. 162.5°C. The crystal suitable for X-ray analysis was grown by slow evaporation of the solvent from a diethyl ether solution at 20°. Anal. Calcd for C6H5ClN2O: C, 45.97; H, 3.14; N, 17.82%. Found: C, 46.03; H, 3.22; N, 17.89%.

Refinement top

All H atoms were positioned with idealized geometry, with C—H = 0.96 and N—H = 0.86 Å, and were refined with Uiso(H) values set to 1.2 Ueq(C,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound along [100] with intermolecular N—H···N and N—H···O hydrogen bonding shown as dashed lines.
2-Chloropyridine-3-carboxamide top
Crystal data top
C6H5ClN2OF(000) = 320
Mr = 156.57Dx = 1.539 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.980 (5) ÅCell parameters from 1764 reflections
b = 13.627 (9) Åθ = 2.9–26.9°
c = 7.108 (5) ŵ = 0.49 mm1
β = 91.82 (5)°T = 293 K
V = 675.8 (8) Å3Plate, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1188 independent reflections
Radiation source: fine-focus sealed tube1083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 86
Tmin = 0.868, Tmax = 0.909k = 1516
2716 measured reflectionsl = 68
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.1035P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1188 reflectionsΔρmax = 0.18 e Å3
92 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.051 (8)
Crystal data top
C6H5ClN2OV = 675.8 (8) Å3
Mr = 156.57Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.980 (5) ŵ = 0.49 mm1
b = 13.627 (9) ÅT = 293 K
c = 7.108 (5) Å0.30 × 0.20 × 0.20 mm
β = 91.82 (5)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1188 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1083 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.909Rint = 0.021
2716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.11Δρmax = 0.18 e Å3
1188 reflectionsΔρmin = 0.23 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.14993 (7)0.10791 (4)0.88571 (7)0.0533 (2)
C10.3716 (2)0.07827 (13)0.7965 (2)0.0349 (4)
N10.4064 (2)0.01655 (11)0.7824 (2)0.0446 (4)
O0.5546 (2)0.30761 (9)0.8932 (2)0.0507 (4)
C60.4574 (2)0.25974 (12)0.7786 (2)0.0351 (4)
N20.3180 (2)0.29749 (11)0.6708 (2)0.0446 (4)
H2A0.29090.35890.67860.054*
H2B0.25450.26060.59300.054*
C30.6760 (3)0.12278 (14)0.6910 (3)0.0430 (5)
H30.76810.16920.66160.052*
C40.7153 (3)0.02376 (16)0.6735 (3)0.0505 (5)
H40.83310.00260.63120.061*
C20.4989 (2)0.15240 (12)0.7524 (2)0.0325 (4)
C50.5774 (3)0.04231 (14)0.7198 (3)0.0506 (6)
H50.60420.10880.70710.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0357 (3)0.0599 (4)0.0647 (4)0.0034 (2)0.0066 (2)0.0116 (2)
C10.0347 (9)0.0346 (9)0.0350 (9)0.0023 (7)0.0060 (7)0.0017 (7)
N10.0541 (10)0.0302 (8)0.0485 (9)0.0029 (7)0.0125 (8)0.0009 (6)
O0.0548 (9)0.0356 (7)0.0603 (9)0.0041 (6)0.0181 (7)0.0060 (6)
C60.0333 (9)0.0319 (9)0.0399 (9)0.0025 (7)0.0003 (7)0.0020 (7)
N20.0456 (9)0.0300 (8)0.0573 (10)0.0039 (6)0.0124 (8)0.0020 (7)
C30.0336 (10)0.0493 (12)0.0460 (10)0.0009 (8)0.0022 (8)0.0017 (8)
C40.0431 (11)0.0566 (13)0.0512 (12)0.0162 (9)0.0069 (9)0.0109 (9)
C20.0298 (9)0.0335 (9)0.0337 (9)0.0002 (7)0.0051 (7)0.0002 (7)
C50.0649 (14)0.0346 (10)0.0509 (11)0.0130 (9)0.0191 (10)0.0081 (8)
Geometric parameters (Å, º) top
Cl—C11.738 (2)N2—H2B0.8600
C1—N11.319 (2)C3—C41.383 (3)
C1—C21.388 (3)C3—C21.385 (3)
N1—C51.334 (3)C3—H30.9300
O—C61.230 (2)C4—C51.366 (3)
C6—N21.324 (2)C4—H40.9300
C6—C21.504 (3)C5—H50.9300
N2—H2A0.8600
N1—C1—C2125.08 (18)C4—C3—H3120.2
N1—C1—Cl115.07 (14)C2—C3—H3120.2
C2—C1—Cl119.80 (14)C5—C4—C3118.6 (2)
C1—N1—C5116.88 (16)C5—C4—H4120.7
O—C6—N2123.86 (17)C3—C4—H4120.7
O—C6—C2119.55 (15)C3—C2—C1116.34 (17)
N2—C6—C2116.57 (15)C3—C2—C6120.00 (16)
C6—N2—H2A120.0C1—C2—C6123.56 (16)
C6—N2—H2B120.0N1—C5—C4123.49 (18)
H2A—N2—H2B120.0N1—C5—H5118.3
C4—C3—C2119.63 (19)C4—C5—H5118.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.213.003 (3)154
N2—H2B···Oii0.862.173.015 (3)168
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H5ClN2O
Mr156.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.980 (5), 13.627 (9), 7.108 (5)
β (°) 91.82 (5)
V3)675.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.868, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
2716, 1188, 1083
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.11
No. of reflections1188
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.23

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.213.003 (3)153.5
N2—H2B···Oii0.862.173.015 (3)168.4
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the SNSFC (grant No. 2008011021), the Foundation for Returned Overseas Chinese Scholars of Shanxi Province and Shanxi Key Laboratory Foundation for financial support, and the Youth Foundation of Shanxi University, China (grant No. 2006026).

References

First citationOda, M., Sakaki, T., Sasaki, N., Nonaka, H., Yamagishi, K. & Tomita, H. (1993). J. Pestic. Sci. 18, 49–57.  CrossRef Google Scholar
First citationQin, Z., Jennings, M. C. & Puddephatt, R. J. (2001). Inorg. Chem. 40, 6220–6228.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds