organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)-2-[(3-phenyl­isoquinolin-1-yl)sulfan­yl]ethanone

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 27 December 2008; accepted 5 January 2009; online 8 January 2009)

The title compound, C23H16ClNOS, exhibits dihedral angles of 11.73 (1) and 66.07 (1)°, respectively, between the mean plane of the isoquinoline system and the attached phenyl ring, and between the isoquinoline system and the chloro­phenyl ring. The dihedral angle between the phenyl and chlorophenyl rings is 54.66 (1)°.

Related literature

For general background, see: Cremlyn et al. (1996[Cremlyn, R. J. (1996). In An Introduction to Organosulfur Chemistry. New York: John Wiley.]); Carreno (1995[Carreno, M. C. (1995). Chem. Rev. 95, 1717-1760.]); Kondo et al. (2000[Kondo, T. & Mitsudo, T. (2000). Chem. Rev. 100, 3205-3220.]); Mosberg & Omnaas (1985[Mosberg, H. I. & Omnaas, J. R. (1985). J. Am. Chem. Soc. 107, 2986-2987.]); McReynolds et al. (2004[McReynolds, M. D., Dougherty, J. M. & Hanson, P. R. (2004). Chem. Rev. 104, 2239-2258.]). For related crystal structures, see: Hathwar et al. (2008[Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.]); Manivel et al. (2009[Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o137-o138.]).

[Scheme 1]

Experimental

Crystal data
  • C23H16ClNOS

  • Mr = 389.89

  • Orthorhombic, P b c a

  • a = 9.5874 (14) Å

  • b = 17.888 (3) Å

  • c = 22.025 (3) Å

  • V = 3777.3 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 290 (2) K

  • 0.26 × 0.20 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.901, Tmax = 0.956

  • 25674 measured reflections

  • 3332 independent reflections

  • 1915 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.125

  • S = 1.04

  • 3332 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organic thioethers are useful synthetic intermediates, key reagents in organic synthesis, bio-organic, medicinal, and heterocyclic chemistry (Cremlyn, 1996 and McReynolds et al., 2004). They are also useful as heteroatomic functional groups in organic synthesis, for example, chiral sulphoxides can be generated by the oxidation of thioethers which are useful as auxiliaries in asymmetric syntheses (Carreno, 1995). Many syntheses have been reported for the preparation of thioethers in literature (Kondo et al., 2000) whereas commonly used method is the alkylation of thiols (Mosberg et al., 1985 and references there in).

The compound (I) forms the dihedral angles of 11.73 (1)° and 66.07 (1)° between mean plane of isoquinoline moiety and phenyl ring and mean plane of isoquinoline moiety and chlorophenyl ring respectively. The crystal packing is stabilized by C—H···O inter molecular Hydrogen bonds (Figure 2).

Related literature top

For general background, see: Cremlyn et al. (1996); Carreno (1995); Kondo et al. (2000); Mosberg & Omnaas (1985); McReynolds et al. (2004). For related crystal structures, see: Hathwar et al. (2008); Manivel et al. (2009).

Experimental top

3-Phenylisoquinoline-1-thiol and 2-bromo-1-(4-chlorophenyl)ethanone were mixed in the ratio 1:1.05 equivalents with ethanol in a round bottom flask. Then it was heated under nitrogen atmosphere on an oil bath at 323 K. After 2 h, the products were filtered and dissolved in chloroform. Further, it was washed with water, dried and concentrated. The single-crystal for X-ray structue anlaysis was obtained from ether solution by slow evaporation.

Refinement top

All the H atoms in (I) were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93 Å and 0.97 Å for aromatic and for methylene H atoms respectively and Uiso(H) = 1.2Ueq(C) for all carbon bound H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the asymmetric unit of (I) with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing diagram of (I).The dotted lines indicate intermolecular C—H···O hydrogen bonds. All H atoms have been omitted for clarity.
1-(4-Chlorophenyl)-2-[(3-phenylisoquinolin-1-yl)sulfanyl]ethanone top
Crystal data top
C23H16ClNOSF(000) = 1616
Mr = 389.89Dx = 1.371 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 871 reflections
a = 9.5874 (14) Åθ = 1.9–25.0°
b = 17.888 (3) ŵ = 0.33 mm1
c = 22.025 (3) ÅT = 290 K
V = 3777.3 (10) Å3Rod, colourless
Z = 80.26 × 0.20 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3332 independent reflections
Radiation source: fine-focus sealed tube1915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.901, Tmax = 0.956k = 2121
25674 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.7191P]
where P = (Fo2 + 2Fc2)/3
3332 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C23H16ClNOSV = 3777.3 (10) Å3
Mr = 389.89Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.5874 (14) ŵ = 0.33 mm1
b = 17.888 (3) ÅT = 290 K
c = 22.025 (3) Å0.26 × 0.20 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3332 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1915 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.956Rint = 0.116
25674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
3332 reflectionsΔρmin = 0.23 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16890 (17)0.07371 (9)0.25163 (6)0.1375 (6)
S10.09127 (10)0.34062 (5)0.06818 (5)0.0545 (3)
O10.0295 (2)0.19469 (13)0.02148 (12)0.0588 (7)
N10.0851 (3)0.36685 (14)0.02265 (13)0.0406 (7)
C10.0416 (3)0.39062 (18)0.03051 (16)0.0401 (9)
C20.1941 (3)0.40302 (18)0.05067 (15)0.0390 (9)
C30.2597 (4)0.46147 (19)0.02355 (16)0.0460 (9)
H30.33480.48410.04300.055*
C40.2805 (4)0.54850 (19)0.06405 (19)0.0554 (10)
H40.35640.57240.04630.067*
C50.2337 (5)0.5720 (2)0.1189 (2)0.0644 (12)
H50.27840.61110.13870.077*
C60.1184 (5)0.5375 (2)0.14581 (18)0.0665 (12)
H60.08620.55430.18320.080*
C70.0532 (4)0.47981 (19)0.11778 (17)0.0570 (11)
H70.02370.45750.13600.068*
C80.1007 (4)0.45349 (17)0.06155 (16)0.0410 (8)
C90.2160 (4)0.48838 (17)0.03338 (16)0.0428 (9)
C100.2362 (4)0.3727 (2)0.11049 (16)0.0439 (9)
C110.3618 (4)0.3927 (2)0.13781 (17)0.0656 (12)
H110.42010.42670.11840.079*
C120.4012 (5)0.3632 (3)0.19275 (19)0.0801 (13)
H120.48540.37790.21000.096*
C130.3193 (5)0.3129 (3)0.22247 (19)0.0778 (13)
H130.34630.29330.25980.093*
C140.1957 (5)0.2919 (2)0.19589 (19)0.0748 (13)
H140.13900.25700.21520.090*
C150.1543 (4)0.3218 (2)0.14102 (17)0.0594 (11)
H150.06940.30720.12430.071*
C160.1538 (3)0.28339 (18)0.00757 (16)0.0486 (10)
H16A0.16850.31500.02760.058*
H16B0.24400.26340.01930.058*
C170.0618 (4)0.21887 (18)0.01117 (18)0.0454 (10)
C180.0910 (4)0.18457 (17)0.07171 (18)0.0470 (9)
C190.2116 (4)0.1996 (2)0.10416 (18)0.0529 (10)
H190.27670.23300.08850.064*
C200.2360 (4)0.1656 (3)0.15937 (19)0.0693 (12)
H200.31790.17540.18060.083*
C210.1389 (6)0.1174 (3)0.18275 (19)0.0769 (13)
C220.0177 (5)0.1022 (2)0.1514 (2)0.0762 (13)
H220.04800.06950.16750.091*
C230.0055 (4)0.1354 (2)0.0962 (2)0.0630 (11)
H230.08690.12490.07500.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1541 (14)0.1891 (16)0.0694 (9)0.0056 (13)0.0200 (9)0.0362 (10)
S10.0462 (6)0.0542 (5)0.0632 (7)0.0085 (5)0.0116 (6)0.0032 (5)
O10.0391 (15)0.0504 (15)0.087 (2)0.0030 (12)0.0112 (15)0.0136 (14)
N10.0357 (17)0.0379 (15)0.0481 (19)0.0030 (14)0.0007 (16)0.0072 (14)
C10.032 (2)0.038 (2)0.050 (2)0.0031 (16)0.0014 (18)0.0074 (18)
C20.036 (2)0.037 (2)0.045 (2)0.0020 (17)0.0029 (17)0.0125 (17)
C30.044 (2)0.040 (2)0.054 (2)0.0063 (17)0.005 (2)0.0126 (19)
C40.055 (3)0.040 (2)0.071 (3)0.0047 (19)0.010 (2)0.005 (2)
C50.074 (3)0.043 (2)0.076 (3)0.001 (2)0.017 (3)0.006 (2)
C60.084 (3)0.058 (3)0.058 (3)0.005 (2)0.003 (3)0.011 (2)
C70.060 (3)0.048 (2)0.063 (3)0.000 (2)0.004 (2)0.003 (2)
C80.042 (2)0.0353 (18)0.046 (2)0.0077 (17)0.0068 (19)0.0053 (18)
C90.043 (2)0.0303 (19)0.055 (2)0.0010 (17)0.007 (2)0.0096 (18)
C100.040 (2)0.047 (2)0.045 (2)0.0009 (18)0.001 (2)0.0121 (19)
C110.057 (3)0.087 (3)0.054 (3)0.015 (2)0.002 (2)0.004 (2)
C120.064 (3)0.119 (4)0.057 (3)0.018 (3)0.013 (3)0.003 (3)
C130.082 (4)0.101 (4)0.050 (3)0.005 (3)0.010 (3)0.006 (3)
C140.084 (3)0.078 (3)0.063 (3)0.016 (3)0.009 (3)0.019 (3)
C150.060 (3)0.059 (3)0.058 (3)0.009 (2)0.011 (2)0.005 (2)
C160.033 (2)0.044 (2)0.068 (3)0.0058 (17)0.0008 (19)0.0072 (19)
C170.031 (2)0.0346 (19)0.071 (3)0.0067 (17)0.005 (2)0.011 (2)
C180.039 (2)0.0350 (18)0.067 (3)0.0037 (18)0.005 (2)0.012 (2)
C190.047 (3)0.053 (2)0.058 (3)0.002 (2)0.008 (2)0.008 (2)
C200.059 (3)0.091 (3)0.058 (3)0.009 (3)0.006 (3)0.013 (3)
C210.084 (4)0.090 (3)0.057 (3)0.012 (3)0.019 (3)0.003 (3)
C220.077 (4)0.062 (3)0.090 (4)0.004 (3)0.030 (3)0.007 (3)
C230.050 (3)0.050 (2)0.089 (3)0.002 (2)0.008 (2)0.001 (2)
Geometric parameters (Å, º) top
Cl1—C211.731 (4)C11—C121.373 (5)
S1—C11.764 (3)C11—H110.9300
S1—C161.786 (3)C12—C131.362 (5)
O1—C171.212 (4)C12—H120.9300
N1—C11.314 (4)C13—C141.374 (5)
N1—C21.375 (4)C13—H130.9300
C1—C81.433 (4)C14—C151.379 (5)
C2—C31.359 (4)C14—H140.9300
C2—C101.481 (4)C15—H150.9300
C3—C91.407 (4)C16—C171.510 (4)
C3—H30.9300C16—H16A0.9700
C4—C51.355 (5)C16—H16B0.9700
C4—C91.412 (4)C17—C181.494 (5)
C4—H40.9300C18—C231.385 (5)
C5—C61.398 (5)C18—C191.385 (5)
C5—H50.9300C19—C201.380 (5)
C6—C71.355 (5)C19—H190.9300
C6—H60.9300C20—C211.369 (6)
C7—C81.401 (4)C20—H200.9300
C7—H70.9300C21—C221.380 (6)
C8—C91.413 (4)C22—C231.371 (5)
C10—C151.378 (4)C22—H220.9300
C10—C111.392 (5)C23—H230.9300
C1—S1—C16100.46 (17)C11—C12—H12119.4
C1—N1—C2119.3 (3)C12—C13—C14118.2 (4)
N1—C1—C8123.6 (3)C12—C13—H13120.9
N1—C1—S1119.0 (3)C14—C13—H13120.9
C8—C1—S1117.3 (3)C13—C14—C15121.0 (4)
C3—C2—N1121.1 (3)C13—C14—H14119.5
C3—C2—C10123.1 (3)C15—C14—H14119.5
N1—C2—C10115.8 (3)C10—C15—C14121.3 (4)
C2—C3—C9121.2 (3)C10—C15—H15119.4
C2—C3—H3119.4C14—C15—H15119.4
C9—C3—H3119.4C17—C16—S1116.5 (2)
C5—C4—C9121.1 (4)C17—C16—H16A108.2
C5—C4—H4119.4S1—C16—H16A108.2
C9—C4—H4119.4C17—C16—H16B108.2
C4—C5—C6120.3 (4)S1—C16—H16B108.2
C4—C5—H5119.9H16A—C16—H16B107.3
C6—C5—H5119.9O1—C17—C18121.2 (3)
C7—C6—C5120.5 (4)O1—C17—C16122.2 (3)
C7—C6—H6119.8C18—C17—C16116.6 (3)
C5—C6—H6119.8C23—C18—C19118.6 (4)
C6—C7—C8120.6 (4)C23—C18—C17118.9 (4)
C6—C7—H7119.7C19—C18—C17122.5 (3)
C8—C7—H7119.7C20—C19—C18120.7 (4)
C7—C8—C9119.6 (3)C20—C19—H19119.6
C7—C8—C1123.8 (3)C18—C19—H19119.6
C9—C8—C1116.5 (3)C21—C20—C19119.6 (4)
C3—C9—C4123.8 (3)C21—C20—H20120.2
C3—C9—C8118.2 (3)C19—C20—H20120.2
C4—C9—C8118.0 (3)C20—C21—C22120.6 (4)
C15—C10—C11116.9 (4)C20—C21—Cl1120.1 (4)
C15—C10—C2121.4 (3)C22—C21—Cl1119.3 (4)
C11—C10—C2121.8 (3)C23—C22—C21119.7 (4)
C12—C11—C10121.3 (4)C23—C22—H22120.2
C12—C11—H11119.3C21—C22—H22120.2
C10—C11—H11119.3C22—C23—C18120.8 (4)
C13—C12—C11121.3 (4)C22—C23—H23119.6
C13—C12—H12119.4C18—C23—H23119.6
C2—N1—C1—C80.6 (4)C3—C2—C10—C1112.3 (5)
C2—N1—C1—S1176.3 (2)N1—C2—C10—C11165.9 (3)
C16—S1—C1—N114.4 (3)C15—C10—C11—C120.4 (6)
C16—S1—C1—C8168.5 (2)C2—C10—C11—C12178.8 (4)
C1—N1—C2—C31.8 (4)C10—C11—C12—C130.4 (7)
C1—N1—C2—C10179.9 (3)C11—C12—C13—C140.3 (7)
N1—C2—C3—C91.8 (5)C12—C13—C14—C151.0 (7)
C10—C2—C3—C9180.0 (3)C11—C10—C15—C140.3 (6)
C9—C4—C5—C61.0 (6)C2—C10—C15—C14178.1 (3)
C4—C5—C6—C70.8 (6)C13—C14—C15—C101.0 (6)
C5—C6—C7—C80.3 (6)C1—S1—C16—C1773.9 (3)
C6—C7—C8—C91.2 (5)S1—C16—C17—O118.5 (4)
C6—C7—C8—C1176.9 (3)S1—C16—C17—C18163.1 (2)
N1—C1—C8—C7178.9 (3)O1—C17—C18—C2313.8 (5)
S1—C1—C8—C74.2 (4)C16—C17—C18—C23167.7 (3)
N1—C1—C8—C92.9 (5)O1—C17—C18—C19165.7 (3)
S1—C1—C8—C9174.0 (2)C16—C17—C18—C1912.8 (4)
C2—C3—C9—C4179.5 (3)C23—C18—C19—C200.8 (5)
C2—C3—C9—C80.7 (5)C17—C18—C19—C20178.7 (3)
C5—C4—C9—C3180.0 (3)C18—C19—C20—C211.0 (6)
C5—C4—C9—C80.2 (5)C19—C20—C21—C220.5 (6)
C7—C8—C9—C3178.9 (3)C19—C20—C21—Cl1179.4 (3)
C1—C8—C9—C32.8 (4)C20—C21—C22—C230.2 (6)
C7—C8—C9—C40.9 (4)Cl1—C21—C22—C23178.7 (3)
C1—C8—C9—C4177.3 (3)C21—C22—C23—C180.4 (6)
C3—C2—C10—C15169.4 (3)C19—C18—C23—C220.1 (5)
N1—C2—C10—C1512.4 (4)C17—C18—C23—C22179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.513.322 (4)147
C16—H16B···O1ii0.972.473.128 (4)125
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC23H16ClNOS
Mr389.89
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)290
a, b, c (Å)9.5874 (14), 17.888 (3), 22.025 (3)
V3)3777.3 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.26 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.901, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
25674, 3332, 1915
Rint0.116
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.125, 1.04
No. of reflections3332
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993).

 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Prof T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarreno, M. C. (1995). Chem. Rev. 95, 1717–1760.  CrossRef CAS Web of Science Google Scholar
First citationCremlyn, R. J. (1996). In An Introduction to Organosulfur Chemistry. New York: John Wiley.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKondo, T. & Mitsudo, T. (2000). Chem. Rev. 100, 3205–3220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o137–o138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcReynolds, M. D., Dougherty, J. M. & Hanson, P. R. (2004). Chem. Rev. 104, 2239–2258.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMosberg, H. I. & Omnaas, J. R. (1985). J. Am. Chem. Soc. 107, 2986–2987.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds