supplementary materials


Acta Cryst. (2009). E65, o430    [ doi:10.1107/S1600536809003079 ]

3,3-Dichloro-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide

M. Shafiq, M. N. Tahir, I. U. Khan, S. Ahmad and M. N. Arshad

Abstract top

In the title compound, C10H9Cl2NO3S, the S atom, which is a component atom of a heterocyclic ring, shows tetrahedral coordination. The heterocyclic ring is not planar.

Comment top

In continuation to the formation of different 2,1-Benzothiazine (Shafiq, Khan et al., 2008), (Tahir et al., 2008), (Arshad et al., 2008), the title compound (I), (Fig 1), has been prepared.

We compare the bond distances and bond angles realised in (I) with the corresponding values observed in 3,3-Dibromo-1-ethyl-1H-2,1-benzothiazin- 4(3H)-one 2,2-dioxide (II) (Shafiq, Tahir et al., 2008), which is structural isomer of (I). The bond distances S1—C8 [1.817 (2) Å] and S1—N1 [1.625 (2) Å] are larger as compared to 1.792 (8) and 1.617 (6) Å, respectively. This change in the thiazine ring is observed due to the reduction of C–Cl [1.744 (2), 1.766 (2) Å] bonds as compared with C—Br [1.898 (7), 1.947 (8) Å] bonds. The dihedral angle of benzene ring with N-ethyl moiety and the SO2 group is 78.08 (25)° and 77.99 (11)°, respectively. There exist intermolecular H-bonds (Table 1), due to which the molecules are connected in helical way along the c axis.

Related literature top

For related compounds, see: Arshad et al. (2008); Shafiq, Khan et al. (2008); Shafiq, Tahir et al. (2008); Tahir et al. (2008).

Experimental top

The title copound was prepared following the same method as in Shafiq, Tahir et al. (2008). A mixture of 1-Ethyl-1H-2,1 benzothiazin-4(3H)-one 2,2 dioxide (Shafiq, Khan et al., 2008)(34 mg, 0.151 mmol), N-Chloro Succinamide (40.2 mg, 0.302 mmol) and Benzoylperoxide (2.11 mg, 0.009 mmol) in Carbon Tetra Chloride (10 ml), was heated under reflux for two hours. CCl4 was evaporated under reduced pressure and the residue was recrystallized in ethanol for X-ray diffraction studies.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines show the intramolecular H-bonds.
[Figure 2] Fig. 2. The partial packing figure (PLATON: Spek, 2003) which shows that molecules are connected through intermolecular H-bonds along the c axis in helical way.
3,3-Dichloro-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide top
Crystal data top
C10H9Cl2NO3SF(000) = 600
Mr = 294.14Dx = 1.643 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3082 reflections
a = 7.7416 (2) Åθ = 2.3–28.7°
b = 11.9185 (3) ŵ = 0.72 mm1
c = 12.9614 (3) ÅT = 296 K
β = 95.995 (2)°Prismatic, colorless
V = 1189.39 (5) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3082 independent reflections
Radiation source: fine-focus sealed tube1872 reflections with I > 2σ(I)
graphiteRint = 0.041
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 2.3°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1616
Tmin = 0.838, Tmax = 0.881l = 1715
12499 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.046P)2 + 0.3265P]
where P = (Fo2 + 2Fc2)/3
3082 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H9Cl2NO3SV = 1189.39 (5) Å3
Mr = 294.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7416 (2) ŵ = 0.72 mm1
b = 11.9185 (3) ÅT = 296 K
c = 12.9614 (3) Å0.24 × 0.20 × 0.18 mm
β = 95.995 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3082 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1872 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.881Rint = 0.041
12499 measured reflectionsθmax = 28.7°
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.110Δρmax = 0.41 e Å3
S = 1.01Δρmin = 0.28 e Å3
3082 reflectionsAbsolute structure: ?
154 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45866 (9)0.41954 (6)0.18953 (6)0.0592 (3)
Cl20.21735 (10)0.55261 (7)0.05418 (5)0.0649 (3)
S10.08395 (8)0.40174 (5)0.20115 (5)0.0421 (2)
O10.2953 (3)0.68290 (16)0.23915 (16)0.0637 (8)
O20.0624 (2)0.47361 (15)0.19971 (13)0.0498 (6)
O30.0781 (3)0.30825 (16)0.13333 (15)0.0635 (7)
N10.1508 (3)0.36020 (16)0.31795 (15)0.0420 (7)
C10.1973 (3)0.4423 (2)0.39506 (17)0.0359 (7)
C20.1918 (3)0.4159 (2)0.49864 (19)0.0472 (9)
C30.2348 (4)0.4945 (3)0.5745 (2)0.0579 (10)
C40.2803 (4)0.6011 (3)0.5502 (2)0.0592 (10)
C50.2877 (3)0.6290 (2)0.4482 (2)0.0510 (9)
C60.2506 (3)0.5507 (2)0.36908 (18)0.0369 (7)
C70.2704 (3)0.5872 (2)0.26343 (19)0.0418 (8)
C80.2613 (3)0.4951 (2)0.17788 (17)0.0419 (8)
C90.1481 (4)0.2393 (2)0.3441 (2)0.0549 (10)
C100.3251 (4)0.1952 (3)0.3774 (3)0.0811 (14)
H20.158790.344230.517070.0567*
H30.232740.474730.643790.0693*
H40.306050.654110.602150.0711*
H50.318040.701720.431430.0612*
H9A0.098210.197560.283970.0658*
H9B0.074720.227860.399440.0658*
H10A0.317780.116920.393850.1217*
H10B0.374310.235520.437490.1217*
H10C0.397430.204680.322150.1217*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0513 (4)0.0709 (5)0.0564 (4)0.0130 (3)0.0109 (3)0.0003 (4)
Cl20.0770 (5)0.0835 (6)0.0339 (3)0.0038 (4)0.0045 (3)0.0121 (3)
S10.0482 (3)0.0423 (4)0.0347 (3)0.0006 (3)0.0011 (3)0.0072 (3)
O10.0897 (15)0.0416 (12)0.0612 (13)0.0127 (10)0.0142 (11)0.0090 (10)
O20.0442 (10)0.0585 (12)0.0450 (10)0.0060 (8)0.0028 (8)0.0015 (9)
O30.0797 (14)0.0552 (12)0.0542 (12)0.0042 (10)0.0001 (10)0.0249 (10)
N10.0558 (13)0.0286 (11)0.0403 (12)0.0035 (9)0.0005 (9)0.0020 (9)
C10.0369 (12)0.0374 (13)0.0327 (12)0.0025 (10)0.0006 (9)0.0007 (10)
C20.0503 (14)0.0531 (17)0.0383 (14)0.0035 (12)0.0047 (11)0.0094 (12)
C30.0592 (18)0.082 (2)0.0317 (14)0.0094 (16)0.0013 (12)0.0010 (14)
C40.0635 (18)0.073 (2)0.0393 (16)0.0020 (16)0.0035 (13)0.0213 (15)
C50.0576 (17)0.0452 (16)0.0488 (16)0.0049 (12)0.0008 (12)0.0114 (13)
C60.0403 (13)0.0362 (13)0.0336 (12)0.0004 (10)0.0004 (10)0.0020 (10)
C70.0415 (13)0.0429 (15)0.0408 (14)0.0032 (11)0.0032 (10)0.0014 (12)
C80.0464 (14)0.0494 (15)0.0299 (13)0.0041 (11)0.0034 (10)0.0034 (11)
C90.0631 (18)0.0348 (15)0.0662 (19)0.0044 (13)0.0045 (14)0.0063 (13)
C100.075 (2)0.0483 (19)0.121 (3)0.0103 (16)0.015 (2)0.0158 (19)
Geometric parameters (Å, °) top
Cl1—C81.766 (2)C5—C61.394 (3)
Cl2—C81.744 (2)C6—C71.460 (3)
S1—O21.4189 (18)C7—C81.557 (3)
S1—O31.417 (2)C9—C101.489 (4)
S1—N11.625 (2)C2—H20.9300
S1—C81.817 (2)C3—H30.9300
O1—C71.204 (3)C4—H40.9300
N1—C11.418 (3)C5—H50.9300
N1—C91.481 (3)C9—H9A0.9700
C1—C21.384 (3)C9—H9B0.9700
C1—C61.408 (3)C10—H10A0.9600
C2—C31.374 (4)C10—H10B0.9600
C3—C41.364 (5)C10—H10C0.9600
C4—C51.370 (4)
Cl1···O13.469 (2)C2···C3iv3.506 (4)
Cl1···O33.244 (2)C2···C2iv3.586 (3)
Cl1···N13.127 (2)C3···C2iv3.506 (4)
Cl1···C13.520 (2)C3···O2iv3.363 (3)
Cl2···O33.306 (2)C3···C1iv3.491 (4)
Cl2···O12.867 (2)C6···O23.229 (3)
Cl2···O23.1604 (18)C9···O2viii3.273 (3)
Cl2···O2i3.3972 (18)C10···C23.285 (4)
Cl1···H10C3.1500C10···O2viii3.418 (4)
Cl2···H10Aii3.0600C1···H10B2.8500
O1···Cl13.469 (2)C2···H10B2.7400
O1···Cl22.867 (2)C2···H9B2.6900
O2···Cl23.1604 (18)C9···H22.5600
O2···C63.229 (3)C10···H22.9300
O2···Cl2i3.3972 (18)H2···C92.5600
O2···C10iii3.418 (4)H2···C102.9300
O2···C3iv3.363 (3)H2···H9B2.1100
O2···C9iii3.273 (3)H2···H10B2.4300
O3···C2ii3.359 (3)H2···O3vii2.4800
O3···Cl23.306 (2)H3···O2iv2.6100
O3···Cl13.244 (2)H4···O1ix2.6400
O1···H52.4900H5···O12.4900
O1···H10Cv2.6000H9A···O32.3500
O1···H4vi2.6400H9A···O2viii2.6900
O2···H3iv2.6100H9B···C22.6900
O2···H9Aiii2.6900H9B···H22.1100
O2···H10Aiii2.7900H10A···O2viii2.7900
O3···H9A2.3500H10A···Cl2vii3.0600
O3···H2ii2.4800H10B···C12.8500
N1···Cl13.127 (2)H10B···C22.7400
C1···Cl13.520 (2)H10B···H22.4300
C1···C3iv3.491 (4)H10C···Cl13.1500
C2···O3vii3.359 (3)H10C···O1x2.6000
C2···C103.285 (4)
O2—S1—O3119.52 (12)Cl1—C8—C7108.92 (16)
O2—S1—N1111.86 (11)Cl2—C8—S1108.36 (12)
O2—S1—C8104.14 (11)Cl2—C8—C7111.57 (17)
O3—S1—N1108.95 (11)S1—C8—C7107.00 (15)
O3—S1—C8110.75 (12)N1—C9—C10112.0 (2)
N1—S1—C899.71 (11)C1—C2—H2120.00
S1—N1—C1118.62 (16)C3—C2—H2120.00
S1—N1—C9119.93 (16)C2—C3—H3119.00
C1—N1—C9121.25 (19)C4—C3—H3119.00
N1—C1—C2119.7 (2)C3—C4—H4120.00
N1—C1—C6121.6 (2)C5—C4—H4120.00
C2—C1—C6118.7 (2)C4—C5—H5119.00
C1—C2—C3120.6 (2)C6—C5—H5119.00
C2—C3—C4121.3 (2)N1—C9—H9A109.00
C3—C4—C5119.1 (3)N1—C9—H9B109.00
C4—C5—C6121.4 (2)C10—C9—H9A109.00
C1—C6—C5118.8 (2)C10—C9—H9B109.00
C1—C6—C7124.1 (2)H9A—C9—H9B108.00
C5—C6—C7117.2 (2)C9—C10—H10A109.00
O1—C7—C6124.2 (2)C9—C10—H10B110.00
O1—C7—C8118.6 (2)C9—C10—H10C109.00
C6—C7—C8117.2 (2)H10A—C10—H10B110.00
Cl1—C8—Cl2111.28 (13)H10A—C10—H10C109.00
Cl1—C8—S1109.60 (13)H10B—C10—H10C109.00
O2—S1—N1—C157.1 (2)N1—C1—C2—C3179.4 (2)
O2—S1—N1—C9117.7 (2)C6—C1—C2—C31.0 (4)
O3—S1—N1—C1168.51 (19)N1—C1—C6—C5177.4 (2)
O3—S1—N1—C916.6 (2)N1—C1—C6—C72.8 (4)
C8—S1—N1—C152.5 (2)C2—C1—C6—C53.1 (3)
C8—S1—N1—C9132.7 (2)C2—C1—C6—C7176.8 (2)
O2—S1—C8—Cl1174.51 (11)C1—C2—C3—C41.5 (4)
O2—S1—C8—Cl263.88 (14)C2—C3—C4—C51.8 (5)
O2—S1—C8—C756.55 (17)C3—C4—C5—C60.3 (4)
O3—S1—C8—Cl155.78 (15)C4—C5—C6—C12.8 (4)
O3—S1—C8—Cl265.83 (16)C4—C5—C6—C7177.1 (2)
O3—S1—C8—C7173.73 (16)C1—C6—C7—O1170.6 (3)
N1—S1—C8—Cl158.88 (14)C1—C6—C7—C810.4 (3)
N1—S1—C8—Cl2179.52 (12)C5—C6—C7—O19.6 (4)
N1—S1—C8—C759.08 (17)C5—C6—C7—C8169.4 (2)
S1—N1—C1—C2156.00 (19)O1—C7—C8—Cl1103.2 (2)
S1—N1—C1—C624.5 (3)O1—C7—C8—Cl220.0 (3)
C9—N1—C1—C218.8 (4)O1—C7—C8—S1138.4 (2)
C9—N1—C1—C6160.7 (2)C6—C7—C8—Cl175.9 (2)
S1—N1—C9—C10118.6 (2)C6—C7—C8—Cl2160.91 (17)
C1—N1—C9—C1066.7 (3)C6—C7—C8—S142.5 (2)
Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+1/2, z−1/2; (iii) −x, y+1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) −x+1, y+1/2, −z+1/2; (vi) x, −y+3/2, z−1/2; (vii) x, −y+1/2, z+1/2; (viii) −x, y−1/2, −z+1/2; (ix) x, −y+3/2, z+1/2; (x) −x+1, y−1/2, −z+1/2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3vii0.93002.48003.359 (3)157.00
C10—H10C···O1x0.96002.60003.445 (4)147.00
Symmetry codes: (vii) x, −y+1/2, z+1/2; (x) −x+1, y−1/2, −z+1/2.
Acknowledgements top

MS greatfully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN 042-120567-PS2-276).

references
References top

Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558.

Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.