organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o246-o247

2-Meth­oxy­benzaldehyde 2,4-di­nitro­phenyl­hydrazone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 4 December 2008; accepted 1 January 2009; online 8 January 2009)

In the title compound, C14H12N4O5, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. The dihedral angle between the two benzene rings is 3.91 (3)°, which shows the mol­ecule is almost planar. The para-nitro group is twisted from the benzene ring to which it is attached, making a dihedral angle of 8.50 (9)°. In the crystal structure, mol­ecules are linked together by inter­molecular C—H⋯O and inter­molecular three-centred O⋯O [2.8646 (12)–2.9213 (11) Å] and O⋯N [3.0518 (11) Å] inter­actions. The crystal structure is further stabilized by inter­molecular ππ inter­actions [centroid-to-centroid distances 3.5708 (6)–3.9728 (12) Å].

Related literature

For general background, see: Lamberton et al. (1974[Lamberton, J. A., Nelson, E. R. & Triffett, C. K. (1974). Aust. J. Chem. 27, 1521-1529.]); Zegota (1999[Zegota, H. (1999). J. Chromatogr. A, 863, 227-233.]); Cordis et al. (1998[Cordis, G. A., Das, D. K. & Riedel, W. (1998). J. Chromatogr. A, 798, 117-123.]); Zlotorzynska & Lai (1999[Zlotorzynska, E. D. & Lai, E. P. C. (1999). J. Chromatogr. A, 853, 487-796.]); Niknam et al. (2005[Niknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun. 35, 2231-2236.]); Guillaumont & Nakamura (2000[Guillaumont, D. & Nakamura, S. (2000). Dyes Pigm. 46, 85-92.]); Raj & Kurup (2006[Raj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta A, 71, 1251-1260.]). For biological applications, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). Standard bond-length data are given in: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of the classification of ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N4O5

  • Mr = 316.28

  • Triclinic, [P \overline 1]

  • a = 7.0315 (1) Å

  • b = 7.6205 (2) Å

  • c = 14.1896 (4) Å

  • α = 98.048 (1)°

  • β = 97.064 (1)°

  • γ = 109.467 (1)°

  • V = 697.99 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100.0 (1) K

  • 0.57 × 0.23 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.988

  • 14423 measured reflections

  • 5023 independent reflections

  • 4442 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.06

  • 5023 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O2 0.864 (15) 2.029 (15) 2.6253 (11) 125.4 (13)
N2—H1N2⋯O2i 0.864 (15) 2.599 (15) 3.3475 (11) 145.6 (13)
C2—H2A⋯O4ii 0.93 2.44 3.3113 (12) 155
C5—H5A⋯O2iii 0.93 2.60 3.3184 (11) 135
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

2,4-Dinitrophenylhydrazones play a more important role as stabilizers for the detection, characterization and protection of carbonyl groups than phenylhydrazones (Niknam et al., 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in various forms of analytical chemistry (Lamberton et al., 1974; Zegota, 1999; Cordis et al., 1998; Zlotorzynska & Lai, 1999) and are also used as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2006). In addition, some phenylhydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). For these reasons, the structure of the title compound is reported here.

Bond lengths in the title compound (Fig. 1) are normal (Allen et al., 1987). An intramolecular N—H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The molecule is nearly planar, with a maximum deviation from the mean plane of -0.3464 (8) Å for atom O4 which is due to the intermolecular three-centered O···O and O···N interactions. The dihedral angle between the two benzene rings is 4.63 (1)°. Interesting features of the crystal structure include intermolecular three-centered O2···O2i [2.8646 (12) Å; (i) 1 - x, 1 - y, -z], O4···O4iv [2.8646 (12) Å; (iv) code: -x, -y, -1 - z], and O4···N4ii [3.0518 (11) Å] interactions. The molecules are also linked by C—H···O hydrogen bonds (Table 1), and by intermolecular ππ interactions giving centroid–centroid distances for rings C1–C6 (Cg1) and C8–C13 (Cg2) of 3.5708 (6) Å and 3.9728 (12) Å [Cg1···Cg2v; (v) -x, -y, -z and Cg1···Cg2vi; (vi) 1 - x, -y, -z] (interplanar spacings are 3.3080 (4) and 3.3691 (4) Å respectively (Fig. 2).

Related literature top

For general background, see: Lamberton et al., (1974); Zegota, (1999); Cordis et al., (1998); Zlotorzynska & Lai, (1999); Niknam <i. et al. (2005); Guillaumont & Nakamura (2000); Raj & Kurup (2006). For the biological applications, see: Okabe et al. (1993). Standard bond-length data are given in: Allen et al. (1987). For details of the classification of ring motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized based on the reported procedure (Okabe et al. 1993) except that 3-methoxybenzaldehyde (1 mmol, 136 mg) was used instead. Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in ethanol.

Refinement top

N-bound H atom was located from the difference Fourier map and refined freely. The remaining H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules are linked through intermolecular C—H···O and O···O interactions and also are stacked along the a axis. Intermolecular interactions are shown as dashed lines.
2-Methoxybenzaldehyde 2,4-dinitrophenylhydrazone top
Crystal data top
C14H12N4O5Z = 2
Mr = 316.28F(000) = 328
Triclinic, P1Dx = 1.505 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0315 (1) ÅCell parameters from 6651 reflections
b = 7.6205 (2) Åθ = 2.9–40.3°
c = 14.1896 (4) ŵ = 0.12 mm1
α = 98.048 (1)°T = 100 K
β = 97.064 (1)°Block, orange
γ = 109.467 (1)°0.57 × 0.23 × 0.10 mm
V = 697.99 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5023 independent reflections
Radiation source: fine-focus sealed tube4442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 32.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.936, Tmax = 0.988k = 1111
14423 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.1626P]
where P = (Fo2 + 2Fc2)/3
5023 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H12N4O5γ = 109.467 (1)°
Mr = 316.28V = 697.99 (3) Å3
Triclinic, P1Z = 2
a = 7.0315 (1) ÅMo Kα radiation
b = 7.6205 (2) ŵ = 0.12 mm1
c = 14.1896 (4) ÅT = 100 K
α = 98.048 (1)°0.57 × 0.23 × 0.10 mm
β = 97.064 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5023 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4442 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.988Rint = 0.021
14423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.52 e Å3
5023 reflectionsΔρmin = 0.25 e Å3
213 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52355 (11)0.19077 (9)0.30740 (5)0.01789 (14)
O20.31793 (12)0.47602 (10)0.06604 (5)0.02132 (15)
O30.20422 (12)0.51054 (10)0.20851 (5)0.02350 (16)
O40.18137 (11)0.00408 (11)0.45869 (5)0.02104 (15)
O50.19171 (12)0.28928 (10)0.44929 (5)0.02410 (16)
N10.27092 (11)0.00256 (11)0.02604 (5)0.01410 (14)
N20.26656 (12)0.13732 (11)0.02830 (5)0.01416 (14)
N30.22761 (12)0.40930 (10)0.15138 (6)0.01487 (15)
N40.14093 (12)0.11921 (11)0.41450 (5)0.01611 (15)
C10.46732 (13)0.00043 (12)0.27560 (6)0.01377 (15)
C20.48758 (14)0.12628 (13)0.33510 (6)0.01710 (17)
H2A0.54760.08150.40010.021*
C30.41767 (15)0.31935 (14)0.29676 (7)0.01947 (18)
H3A0.43060.40350.33650.023*
C40.32856 (14)0.38821 (13)0.19954 (7)0.01804 (17)
H4A0.28140.51770.17450.022*
C50.31052 (13)0.26234 (12)0.14015 (6)0.01530 (16)
H5A0.25140.30850.07510.018*
C60.38009 (12)0.06701 (12)0.17671 (6)0.01284 (15)
C70.36703 (13)0.06671 (12)0.11394 (6)0.01371 (15)
H7A0.42760.19670.13730.016*
C80.17242 (12)0.07996 (12)0.12228 (6)0.01178 (15)
C90.09189 (13)0.11672 (12)0.16426 (6)0.01378 (15)
H9A0.10560.20380.12660.017*
C100.00529 (13)0.18102 (12)0.25882 (6)0.01405 (15)
H10A0.05470.31010.28520.017*
C110.02975 (12)0.05112 (12)0.31553 (6)0.01291 (15)
C120.04681 (12)0.14065 (12)0.27956 (6)0.01311 (15)
H12A0.03070.22530.31840.016*
C130.14893 (12)0.20609 (11)0.18400 (6)0.01222 (15)
C140.64623 (15)0.27271 (14)0.40200 (7)0.01993 (18)
H14A0.68760.40840.41200.030*
H14B0.76570.23770.40740.030*
H14C0.56750.22690.45000.030*
H1N20.329 (2)0.256 (2)0.0027 (11)0.035 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0227 (3)0.0151 (3)0.0117 (3)0.0049 (2)0.0022 (2)0.0014 (2)
O20.0294 (4)0.0137 (3)0.0151 (3)0.0053 (3)0.0036 (3)0.0028 (2)
O30.0317 (4)0.0130 (3)0.0239 (4)0.0077 (3)0.0032 (3)0.0055 (3)
O40.0218 (3)0.0268 (4)0.0147 (3)0.0103 (3)0.0016 (2)0.0048 (3)
O50.0274 (4)0.0189 (3)0.0185 (3)0.0055 (3)0.0040 (3)0.0063 (3)
N10.0153 (3)0.0149 (3)0.0115 (3)0.0049 (2)0.0015 (2)0.0030 (2)
N20.0173 (3)0.0123 (3)0.0109 (3)0.0042 (3)0.0004 (2)0.0014 (2)
N30.0162 (3)0.0115 (3)0.0158 (3)0.0051 (2)0.0007 (3)0.0007 (2)
N40.0144 (3)0.0190 (3)0.0126 (3)0.0052 (3)0.0001 (2)0.0002 (3)
C10.0130 (3)0.0156 (4)0.0116 (3)0.0044 (3)0.0017 (3)0.0018 (3)
C20.0164 (4)0.0212 (4)0.0130 (4)0.0057 (3)0.0011 (3)0.0049 (3)
C30.0199 (4)0.0207 (4)0.0195 (4)0.0072 (3)0.0041 (3)0.0091 (3)
C40.0191 (4)0.0142 (4)0.0199 (4)0.0042 (3)0.0047 (3)0.0040 (3)
C50.0151 (3)0.0150 (4)0.0136 (4)0.0032 (3)0.0024 (3)0.0014 (3)
C60.0123 (3)0.0145 (3)0.0108 (3)0.0040 (3)0.0017 (3)0.0018 (3)
C70.0145 (3)0.0138 (3)0.0118 (3)0.0042 (3)0.0019 (3)0.0016 (3)
C80.0120 (3)0.0124 (3)0.0103 (3)0.0042 (3)0.0013 (3)0.0010 (3)
C90.0160 (3)0.0113 (3)0.0128 (4)0.0039 (3)0.0015 (3)0.0020 (3)
C100.0151 (3)0.0111 (3)0.0136 (4)0.0030 (3)0.0014 (3)0.0001 (3)
C110.0119 (3)0.0144 (3)0.0103 (3)0.0034 (3)0.0000 (3)0.0007 (3)
C120.0128 (3)0.0139 (3)0.0124 (3)0.0051 (3)0.0008 (3)0.0022 (3)
C130.0128 (3)0.0100 (3)0.0129 (3)0.0039 (3)0.0007 (3)0.0007 (3)
C140.0188 (4)0.0225 (4)0.0131 (4)0.0048 (3)0.0019 (3)0.0032 (3)
Geometric parameters (Å, º) top
O1—C11.3618 (11)C4—C51.3883 (13)
O1—C141.4344 (11)C4—H4A0.9300
O2—N31.2456 (10)C5—C61.4001 (12)
O3—N31.2274 (10)C5—H5A0.9300
O4—N41.2329 (10)C6—C71.4617 (12)
O5—N41.2328 (10)C7—H7A0.9300
N1—C71.2858 (11)C8—C91.4224 (11)
N1—N21.3736 (10)C8—C131.4227 (11)
N2—C81.3545 (10)C9—C101.3692 (11)
N2—H1N20.864 (16)C9—H9A0.9300
N3—C131.4435 (11)C10—C111.3998 (12)
N4—C111.4520 (11)C10—H10A0.9300
C1—C21.3985 (12)C11—C121.3730 (12)
C1—C61.4092 (11)C12—C131.3912 (11)
C2—C31.3894 (14)C12—H12A0.9300
C2—H2A0.9300C14—H14A0.9600
C3—C41.3916 (13)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C1—O1—C14118.36 (7)C1—C6—C7119.95 (7)
C7—N1—N2115.65 (7)N1—C7—C6119.25 (8)
C8—N2—N1118.87 (7)N1—C7—H7A120.4
C8—N2—H1N2121.6 (10)C6—C7—H7A120.4
N1—N2—H1N2119.4 (10)N2—C8—C9119.67 (7)
O3—N3—O2122.20 (7)N2—C8—C13123.82 (7)
O3—N3—C13119.09 (7)C9—C8—C13116.51 (7)
O2—N3—C13118.71 (7)C10—C9—C8121.61 (8)
O5—N4—O4123.66 (8)C10—C9—H9A119.2
O5—N4—C11118.19 (7)C8—C9—H9A119.2
O4—N4—C11118.15 (7)C9—C10—C11119.52 (8)
O1—C1—C2123.98 (8)C9—C10—H10A120.2
O1—C1—C6115.86 (7)C11—C10—H10A120.2
C2—C1—C6120.14 (8)C12—C11—C10121.62 (8)
C3—C2—C1119.74 (8)C12—C11—N4118.64 (7)
C3—C2—H2A120.1C10—C11—N4119.74 (7)
C1—C2—H2A120.1C11—C12—C13118.80 (8)
C2—C3—C4120.73 (8)C11—C12—H12A120.6
C2—C3—H3A119.6C13—C12—H12A120.6
C4—C3—H3A119.6C12—C13—C8121.90 (7)
C5—C4—C3119.58 (8)C12—C13—N3115.84 (7)
C5—C4—H4A120.2C8—C13—N3122.26 (7)
C3—C4—H4A120.2O1—C14—H14A109.5
C4—C5—C6120.96 (8)O1—C14—H14B109.5
C4—C5—H5A119.5H14A—C14—H14B109.5
C6—C5—H5A119.5O1—C14—H14C109.5
C5—C6—C1118.84 (8)H14A—C14—H14C109.5
C5—C6—C7121.21 (7)H14B—C14—H14C109.5
C7—N1—N2—C8178.35 (7)C13—C8—C9—C100.77 (12)
C14—O1—C1—C212.61 (13)C8—C9—C10—C111.15 (13)
C14—O1—C1—C6168.81 (8)C9—C10—C11—C121.96 (13)
O1—C1—C2—C3177.25 (8)C9—C10—C11—N4177.18 (8)
C6—C1—C2—C31.27 (13)O5—N4—C11—C12173.05 (8)
C1—C2—C3—C40.36 (14)O4—N4—C11—C127.77 (12)
C2—C3—C4—C50.38 (14)O5—N4—C11—C107.78 (12)
C3—C4—C5—C60.21 (14)O4—N4—C11—C10171.39 (8)
C4—C5—C6—C10.69 (13)C10—C11—C12—C130.75 (13)
C4—C5—C6—C7178.17 (8)N4—C11—C12—C13178.40 (7)
O1—C1—C6—C5177.21 (7)C11—C12—C13—C81.28 (13)
C2—C1—C6—C51.43 (13)C11—C12—C13—N3179.24 (7)
O1—C1—C6—C73.91 (12)N2—C8—C13—C12178.46 (8)
C2—C1—C6—C7177.45 (8)C9—C8—C13—C122.01 (12)
N2—N1—C7—C6179.67 (7)N2—C8—C13—N30.98 (13)
C5—C6—C7—N17.29 (13)C9—C8—C13—N3178.55 (7)
C1—C6—C7—N1173.86 (8)O3—N3—C13—C121.30 (12)
N1—N2—C8—C93.93 (12)O2—N3—C13—C12178.99 (8)
N1—N2—C8—C13176.55 (8)O3—N3—C13—C8179.23 (8)
N2—C8—C9—C10179.68 (8)O2—N3—C13—C80.48 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.864 (15)2.029 (15)2.6253 (11)125.4 (13)
N2—H1N2···O2i0.864 (15)2.599 (15)3.3475 (11)145.6 (13)
C2—H2A···O4ii0.932.443.3113 (12)155
C5—H5A···O2iii0.932.603.3184 (11)135
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H12N4O5
Mr316.28
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.0315 (1), 7.6205 (2), 14.1896 (4)
α, β, γ (°)98.048 (1), 97.064 (1), 109.467 (1)
V3)697.99 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.57 × 0.23 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.936, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
14423, 5023, 4442
Rint0.021
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.06
No. of reflections5023
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.864 (15)2.029 (15)2.6253 (11)125.4 (13)
N2—H1N2···O2i0.864 (15)2.599 (15)3.3475 (11)145.6 (13)
C2—H2A···O4ii0.93002.44003.3113 (12)155.00
C5—H5A···O2iii0.93002.60003.3184 (11)135.00
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x, y1, z.
 

Footnotes

Additional correspondence author: e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks the Universiti Sains Malaysia for awarding a postdoctoral research fellowship. HK thanks PNU for financial support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordis, G. A., Das, D. K. & Riedel, W. (1998). J. Chromatogr. A, 798, 117–123.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuillaumont, D. & Nakamura, S. (2000). Dyes Pigm. 46, 85–92.  Web of Science CrossRef CAS Google Scholar
First citationLamberton, J. A., Nelson, E. R. & Triffett, C. K. (1974). Aust. J. Chem. 27, 1521–1529.  CrossRef CAS Google Scholar
First citationNiknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun. 35, 2231–2236.  Web of Science CrossRef CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta A, 71, 1251–1260.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZegota, H. (1999). J. Chromatogr. A, 863, 227–233.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZlotorzynska, E. D. & Lai, E. P. C. (1999). J. Chromatogr. A, 853, 487–796.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o246-o247
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds