organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Isopropoxyphenyl N-methyl­carbamate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: wujunnju@hotmail.com

(Received 25 November 2008; accepted 19 January 2009; online 23 January 2009)

In the title compound, C11H15NO3, the mean planes of the carboxamide and isopropyl groups are inclined at 109.9 (1) and 128.7 (2)°, respectively, to the mean plane of the phen­oxy group. In the crystal structure, mol­ecules are stacked along the b axis, without any ππ inter­actions. The stacked columns are linked together by inter­molecular N—H⋯O hydrogen bonds, with an N⋯O distance of 2.842 (2) Å.

Related literature

For background literature, see: Abburi & Nutalapati (2004[Abburi, H. & Nutalapati, V. N. (2004). Anal. Sci. 20, 1707-1710.]); Moreno et al. (2001[Moreno, M. J., Abad, A. & Montoya, A. (2001). J. Agric. Food Chem. 49, 72-78.]); Wang et al. (1998[Wang, T. C., Chiou, J. M., Chang, Y. L. & Hu, M. C. (1998). Carcinogenesis, 19, 623-629.]). For a report of a similar compound, see: Czugler & Kalman (1975[Czugler, M. & Kalman, A. (1975). Cryst. Struct. Commun. 4, 531-533.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15NO3

  • Mr = 209.24

  • Monoclinic, P 21 /c

  • a = 13.275 (3) Å

  • b = 8.8890 (18) Å

  • c = 9.931 (2) Å

  • β = 90.59 (3)°

  • V = 1171.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.975, Tmax = 0.991

  • 2257 measured reflections

  • 2121 independent reflections

  • 1255 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.152

  • S = 1.01

  • 2121 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H0A⋯O3i 0.86 2.02 2.842 (2) 159
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is one of the most important carbamate pesticides. It is widely used to control agricultural and household insect pests due to its low toxicity to mammals and other vertebrates (Abburi & Nutalapati, 2004; Moreno et al., 2001; Wang et al., 1998). We report here the crystal structure of title compound, (I).

The bond lengths and bond angles in title molecule (Fig. 1) are in agreement with those reported for a similar compound incorporating the phenoxycarboxamide group (Czugler & Kalman, 1975). In (I), the O3/C10/N1/C11 plane forms a dihedral angle of 109.9 (1)° with the C4–C9/O2 plane. The C1/C2/C3 plane forms a dihedral angle of 128.7 (2)° with the C4–C9/O1 plane. In the crystal structure, the molecules are stacked along the b axis, without any ππ interaction. The stacked columns are linked together by the intermolecular hydrogen bonds of the type N—- H···O, details have been given in Table 1.

Related literature top

For background literature, see: Abburi & Nutalapati (2004); Moreno et al. (2001); Wang et al. (1998). For a report of a similar compound, see: Czugler & Kalman (1975).

Experimental top

A sample of commercial 2-(1-methylethoxy)phenol methylcarbamate (Aldrich) was crystallized by slow evaporation of a solution in acetone.

Refinement top

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with N—H = 0.86 and C—H = 0.93, 0.96 and 0.98 Å for aryl, methyl and methine H atoms and Uiso(H) = 1.5Ueq(methyl) and 1.2Ueq(the rest) parent atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
2-Isopropoxyphenyl N-methylcarbamate top
Crystal data top
C11H15NO3F(000) = 448
Mr = 209.24Dx = 1.186 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 13.275 (3) Åθ = 9–12°
b = 8.8890 (18) ŵ = 0.09 mm1
c = 9.931 (2) ÅT = 293 K
β = 90.59 (3)°Needle, colourless
V = 1171.8 (4) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1255 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 1515
Absorption correction: ψ scan
(CAD-4 Software; Enraf–Nonius, 1989)
k = 010
Tmin = 0.975, Tmax = 0.991l = 011
2257 measured reflections3 standard reflections every 200 reflections
2121 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.06P)2 + 0.55P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2121 reflectionsΔρmax = 0.21 e Å3
136 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: none
Crystal data top
C11H15NO3V = 1171.8 (4) Å3
Mr = 209.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.275 (3) ŵ = 0.09 mm1
b = 8.8890 (18) ÅT = 293 K
c = 9.931 (2) Å0.30 × 0.10 × 0.10 mm
β = 90.59 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1255 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CAD-4 Software; Enraf–Nonius, 1989)
Rint = 0.023
Tmin = 0.975, Tmax = 0.9913 standard reflections every 200 reflections
2257 measured reflections intensity decay: 1%
2121 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
2121 reflectionsΔρmin = 0.16 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.60393 (17)0.3161 (3)0.19856 (18)0.0506 (6)
H0A0.61770.28310.27770.061*
O10.82141 (16)0.1745 (2)0.0186 (2)0.0748 (7)
O20.66395 (14)0.0939 (2)0.13306 (16)0.0526 (5)
O30.60236 (15)0.2566 (2)0.02273 (15)0.0566 (6)
C10.8569 (3)0.4130 (4)0.1055 (4)0.0941 (12)
H1A0.78680.42830.12360.141*
H1B0.87120.44510.01540.141*
H1C0.89680.47050.16820.141*
C20.9872 (3)0.2104 (4)0.1067 (4)0.0874 (11)
H2A0.99730.10790.13410.131*
H2B1.02740.27560.16250.131*
H2C1.00670.22180.01440.131*
C30.8819 (3)0.2495 (4)0.1202 (4)0.0884 (12)
H3A0.85940.21590.20890.106*
C40.7804 (2)0.0381 (3)0.0493 (3)0.0497 (7)
C50.6971 (2)0.0015 (3)0.0310 (2)0.0448 (7)
C60.6512 (2)0.1395 (4)0.0155 (3)0.0587 (8)
H6A0.59640.16560.06960.070*
C70.6867 (3)0.2379 (4)0.0800 (3)0.0692 (9)
H7A0.65640.33160.08990.083*
C80.7652 (3)0.1993 (4)0.1594 (4)0.0707 (9)
H8A0.78820.26670.22440.085*
C90.8130 (2)0.0602 (3)0.1463 (3)0.0668 (9)
H9A0.86640.03470.20300.080*
C100.62194 (18)0.2312 (3)0.0929 (2)0.0386 (6)
C110.5614 (2)0.4638 (3)0.1832 (3)0.0588 (8)
H11A0.55100.50820.27040.088*
H11B0.60670.52540.13130.088*
H11C0.49810.45640.13780.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0653 (15)0.0723 (17)0.0143 (9)0.0010 (13)0.0002 (9)0.0007 (9)
O10.0689 (15)0.0644 (14)0.0905 (15)0.0241 (12)0.0349 (12)0.0110 (12)
O20.0634 (13)0.0637 (13)0.0305 (9)0.0012 (10)0.0072 (8)0.0068 (9)
O30.0708 (14)0.0784 (14)0.0206 (9)0.0144 (11)0.0055 (8)0.0029 (9)
C10.103 (3)0.081 (3)0.097 (3)0.006 (2)0.004 (2)0.004 (2)
C20.076 (3)0.095 (3)0.090 (3)0.004 (2)0.001 (2)0.001 (2)
C30.080 (3)0.066 (2)0.119 (3)0.022 (2)0.028 (2)0.016 (2)
C40.0456 (16)0.0444 (17)0.0590 (17)0.0041 (14)0.0059 (13)0.0040 (13)
C50.0429 (15)0.0550 (18)0.0365 (13)0.0029 (14)0.0024 (12)0.0027 (12)
C60.0532 (19)0.064 (2)0.0585 (18)0.0117 (16)0.0025 (14)0.0144 (16)
C70.070 (2)0.0504 (19)0.087 (2)0.0091 (17)0.0016 (19)0.0051 (18)
C80.071 (2)0.057 (2)0.084 (2)0.0083 (18)0.0022 (18)0.0126 (17)
C90.056 (2)0.055 (2)0.088 (2)0.0049 (16)0.0258 (17)0.0023 (17)
C100.0387 (14)0.0598 (17)0.0171 (11)0.0121 (13)0.0076 (9)0.0017 (11)
C110.066 (2)0.069 (2)0.0413 (15)0.0057 (17)0.0028 (14)0.0027 (14)
Geometric parameters (Å, º) top
N1—C101.313 (3)C2—H2C0.9600
N1—C111.438 (4)C3—H3A0.9800
N1—H0A0.8600C4—C91.368 (4)
O1—C41.365 (3)C4—C51.402 (4)
O1—C31.446 (4)C5—C61.379 (4)
O2—C51.390 (3)C6—C71.370 (4)
O2—C101.401 (3)C6—H6A0.9300
O3—C101.201 (3)C7—C81.346 (4)
C1—C31.498 (5)C7—H7A0.9300
C1—H1A0.9600C8—C91.395 (4)
C1—H1B0.9600C8—H8A0.9300
C1—H1C0.9600C9—H9A0.9300
C2—C31.448 (5)C11—H11A0.9600
C2—H2A0.9600C11—H11B0.9600
C2—H2B0.9600C11—H11C0.9600
C10—N1—C11120.6 (2)C9—C4—C5118.8 (3)
C10—N1—H0A119.7C6—C5—O2119.2 (2)
C11—N1—H0A119.7C6—C5—C4120.5 (3)
C4—O1—C3118.3 (2)O2—C5—C4120.2 (2)
C5—O2—C10116.62 (17)C7—C6—C5119.8 (3)
C3—C1—H1A109.5C7—C6—H6A120.1
C3—C1—H1B109.5C5—C6—H6A120.1
H1A—C1—H1B109.5C8—C7—C6120.1 (3)
C3—C1—H1C109.5C8—C7—H7A120.0
H1A—C1—H1C109.5C6—C7—H7A120.0
H1B—C1—H1C109.5C7—C8—C9121.4 (3)
C3—C2—H2A109.5C7—C8—H8A119.3
C3—C2—H2B109.5C9—C8—H8A119.3
H2A—C2—H2B109.5C4—C9—C8119.4 (3)
C3—C2—H2C109.5C4—C9—H9A120.3
H2A—C2—H2C109.5C8—C9—H9A120.3
H2B—C2—H2C109.5O3—C10—N1128.1 (3)
O1—C3—C2110.8 (3)O3—C10—O2121.8 (2)
O1—C3—C1105.0 (3)N1—C10—O2110.05 (19)
C2—C3—C1115.9 (3)N1—C11—H11A109.5
O1—C3—H3A108.3N1—C11—H11B109.5
C2—C3—H3A108.3H11A—C11—H11B109.5
C1—C3—H3A108.3N1—C11—H11C109.5
O1—C4—C9127.0 (3)H11A—C11—H11C109.5
O1—C4—C5114.2 (2)H11B—C11—H11C109.5
C4—O1—C3—C291.9 (4)C4—C5—C6—C70.6 (4)
C4—O1—C3—C1142.3 (3)C5—C6—C7—C80.9 (5)
C3—O1—C4—C922.3 (5)C6—C7—C8—C90.6 (5)
C3—O1—C4—C5158.6 (3)O1—C4—C9—C8176.6 (3)
C10—O2—C5—C6116.3 (3)C5—C4—C9—C82.5 (5)
C10—O2—C5—C467.7 (3)C7—C8—C9—C41.1 (5)
O1—C4—C5—C6176.9 (2)C11—N1—C10—O34.4 (4)
C9—C4—C5—C62.3 (4)C11—N1—C10—O2179.5 (2)
O1—C4—C5—O21.0 (4)C5—O2—C10—O310.2 (3)
C9—C4—C5—O2178.1 (3)C5—O2—C10—N1173.3 (2)
O2—C5—C6—C7176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H0A···O3i0.862.022.842 (2)159
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H15NO3
Mr209.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.275 (3), 8.8890 (18), 9.931 (2)
β (°) 90.59 (3)
V3)1171.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CAD-4 Software; Enraf–Nonius, 1989)
Tmin, Tmax0.975, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2257, 2121, 1255
Rint0.023
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.152, 1.01
No. of reflections2121
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H0A···O3i0.86002.02002.842 (2)159.00
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the Jiangsu Institute of Nuclear Medicine.

References

First citationAbburi, H. & Nutalapati, V. N. (2004). Anal. Sci. 20, 1707–1710.  Web of Science PubMed Google Scholar
First citationCzugler, M. & Kalman, A. (1975). Cryst. Struct. Commun. 4, 531–533.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMoreno, M. J., Abad, A. & Montoya, A. (2001). J. Agric. Food Chem. 49, 72–78.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, T. C., Chiou, J. M., Chang, Y. L. & Hu, M. C. (1998). Carcinogenesis, 19, 623–629.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds