organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Preaustinoid A: a meroterpene produced by Penicillium sp.

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and bBioMat - Physics Department, Universidade Estadual Paulista "Júlio de Mesquita Filho", UNESP, 17033-360 Bauru, SP, Brazil
*Correspondence e-mail: julio@power.ufscar.br

(Received 17 December 2008; accepted 20 December 2008; online 8 January 2009)

The title meroterpene preaustinoid A (systematic name: methyl 15-hydr­oxy-2,6,6,10,13,15-hexa­methyl-17-methyl­ene-7,14,16-trioxotetra­cyclo­[11.3.1.02,11.05,10]hepta­decane-1-car­box­yl­ate), C26H36O6, features a fused four-ring arrangement. Three rings are in different distorted chair conformations and the other is in a distorted boat conformation. The absolute configuration was established based on [αD] = −4.97° (c = 1.10 g l−1, CH2Cl2). In the crystal, the mol­ecules are connected into supra­molecular chains via O—H⋯O hydrogen bonds.

Related literature

For related literature, see: dos Santos & Rodrigues-Fo (2002[Santos, R. M. G. dos & Rodrigues-Fo, E. (2002). Phytochemistry, 61, 907-912.]). For structure analysis, see: Cremer and Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Iulek and Zukerman-Schpector (1997[Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433-434.])).

[Scheme 1]

Experimental

Crystal data
  • C26H36O6

  • Mr = 444.55

  • Orthorhombic, P 21 21 21

  • a = 8.5023 (2) Å

  • b = 13.5405 (2) Å

  • c = 19.7127 (4) Å

  • V = 2269.43 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 290 (2) K

  • 0.37 × 0.28 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 27134 measured reflections

  • 2938 independent reflections

  • 2677 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.093

  • S = 1.03

  • 2938 reflections

  • 297 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O3i 0.82 2.05 2.870 (2) 173
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: APEX2, COSMO and BIS (Bruker, 2006[Bruker (2006). APEX2, COSMO, BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, COSMO, BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Endophytic fungi have been a rich source of important biologically active secondary metabolites, in particular meroterpenoids, a class of complex metabolites derived from a mixed terpenoid-polyketide biosynthetic pathway. During an on-going study of substances produced by endophytic fungi, the title compound (I) was isolated and its structure postulated based on APCIMS (Atmospheric Pressure Chemical Ionization Mass Spectrometry), HREIMS (High Resolution Electrospray Mass Spectrometry) and a variety of NMR studies (dos Santos and Rodrigues-Fo, 2002). As suitable crystals were subsequently obtained, a crystal structure determination was undertaken. The four fused rings are in different distorted conformations. Rings A and C are distorted towards a half-chair conformation, ring B is distorted towards a half-boat conformation, and ring D is a boat conformation that is highly distorted towards a half-boat. The ring-puckering parameters (Cremer & Pople, 1975, Iulek & Zukerman-Shpector, 1997) for rings A,B,C, D are: q2 = 0.062 (2), 0.093 (2), 0.059 (2), 0.582 (2) Å, q3 = -0.524 (2), 0.577 (2), -0.624 (2), -0.139 (2) Å, Q = 0.528 (2), 0.584 (2), 0.627 (2), 0.599 (2)°, ϕ2 = 90 (2), 172 (1), -149 (2), -122.4 (2)°, and θ2 = 173.3 (2), 9.1 (2), 174.6 (2), 103.4 (2)°, respectively. The absolute configuration was established based on the [αD] = -4.97° (c 1.10 g/L, CH2Cl2) and the results reported in dos Santos & Rodrigues-Fo (2002). The molecules are linked into a supramolecular chain via intermolecular O-H···O hydrogen bonds, Table 1.

Related literature top

For related literature, see: dos Santos & Rodrigues-Fo (2002). For structure analysis, see: Cremer and Pople (1975); Iulek and Zukerman-Schpector (1997).

Experimental top

Compound (I), Preaustinoid A, was produced during cultivation of Penicillum sp over sterilized rice, and isolated from the methanol extract of the culture. Suitable crystals were obtained, by slow evaporation, from a mixture of dichloromethane, methanol and water.

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were averaged in the final refinement. The H atoms were refined in the riding-model approximation with C—H = 0.93 - 0.98 Å and (0.82 for O—H), and with Uiso(H) = 1.5Ueq(methyl-C) or 1.2Ueq(remaining-C and –O).

Computing details top

Data collection: APEX2, COSMO and BIS (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 30% probability level (arbitrary spheres for the H atoms).
methyl 15-hydroxy-2,6,6,10,13,15-hexamethyl-17-methylene-7,14,16- trioxotetracyclo[11.3.1.02,11.05,10]heptadecane-1-carboxylate top
Crystal data top
C26H36O6F(000) = 960
Mr = 444.55Dx = 1.301 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 22936 reflections
a = 8.5023 (2) Åθ = 1.0–27.5°
b = 13.5405 (2) ŵ = 0.09 mm1
c = 19.7127 (4) ÅT = 290 K
V = 2269.43 (8) Å3Prism, colorless
Z = 40.37 × 0.28 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2677 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ϕ and ω scansh = 119
27134 measured reflectionsk = 1717
2938 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.3814P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2938 reflectionsΔρmax = 0.22 e Å3
297 parametersΔρmin = 0.13 e Å3
0 restraintsAbsolute structure: [αD] = -4.97° and results in dos Santos & Rodrigues-Fo (2002)
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H36O6V = 2269.43 (8) Å3
Mr = 444.55Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5023 (2) ŵ = 0.09 mm1
b = 13.5405 (2) ÅT = 290 K
c = 19.7127 (4) Å0.37 × 0.28 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2677 reflections with I > 2σ(I)
27134 measured reflectionsRint = 0.034
2938 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
2938 reflectionsΔρmin = 0.13 e Å3
297 parametersAbsolute structure: [αD] = -4.97° and results in dos Santos & Rodrigues-Fo (2002)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6598 (2)1.07289 (12)1.05643 (9)0.0288 (4)
C20.6226 (2)1.08110 (12)0.97653 (9)0.0285 (4)
C30.4489 (2)1.10698 (14)0.96387 (10)0.0339 (4)
H3A0.38351.06660.99310.041*
H3B0.43141.17560.97600.041*
C40.3986 (2)1.09105 (13)0.89014 (10)0.0335 (4)
H4A0.45881.13430.86070.040*
H4B0.28821.10760.88510.040*
C50.4252 (2)0.98347 (13)0.86909 (9)0.0281 (4)
H50.37890.94440.90590.034*
C60.3310 (2)0.95241 (13)0.80444 (10)0.0333 (4)
C70.3688 (3)0.84397 (14)0.78946 (10)0.0375 (4)
C80.5381 (3)0.81430 (17)0.79148 (13)0.0480 (5)
H8A0.59250.84370.75320.058*
H8B0.54560.74310.78710.058*
C90.6192 (3)0.84641 (14)0.85749 (10)0.0379 (4)
H9A0.72990.82940.85510.045*
H9B0.57360.81030.89520.045*
C100.6034 (2)0.95805 (13)0.87113 (9)0.0289 (4)
C110.6583 (2)0.97663 (12)0.94619 (8)0.0266 (3)
H110.59670.93040.97370.032*
C120.8309 (2)0.94807 (15)0.95867 (10)0.0346 (4)
H12A0.89860.99480.93550.041*
H12B0.85030.88330.93940.041*
C130.8741 (2)0.94642 (14)1.03528 (10)0.0338 (4)
C140.7714 (3)0.86428 (14)1.06479 (10)0.0372 (4)
C150.6277 (3)0.89190 (13)1.10736 (9)0.0346 (4)
C160.5554 (2)0.99228 (14)1.08868 (9)0.0322 (4)
C170.8335 (2)1.04648 (13)1.06521 (9)0.0317 (4)
C180.6196 (2)1.16872 (13)1.09524 (10)0.0341 (4)
C190.5811 (3)1.23338 (17)1.20486 (12)0.0498 (6)
H19A0.47801.25641.19280.075*
H19B0.65581.28581.19890.075*
H19C0.58111.21261.25140.075*
C200.7279 (3)1.16296 (14)0.94607 (10)0.0392 (5)
H20A0.70831.22410.96920.059*
H20B0.70431.17060.89870.059*
H20C0.83641.14500.95130.059*
C210.1540 (3)0.96145 (17)0.81845 (13)0.0475 (5)
H21A0.12810.92530.85880.071*
H21B0.09610.93490.78080.071*
H21C0.12701.02970.82450.071*
C220.3678 (3)1.01321 (16)0.74011 (10)0.0448 (5)
H22A0.35521.08220.74980.067*
H22B0.29690.99440.70440.067*
H22C0.47411.00080.72610.067*
C230.7051 (2)1.01368 (17)0.81888 (10)0.0409 (5)
H23A0.70110.97980.77610.061*
H23B0.81191.01630.83460.061*
H23C0.66561.07960.81340.061*
C241.0483 (3)0.91813 (19)1.04234 (13)0.0496 (6)
H24A1.07570.91491.08950.074*
H24B1.11220.96691.02030.074*
H24C1.06580.85491.02160.074*
C250.5021 (3)0.81210 (15)1.10693 (14)0.0515 (6)
H25A0.41820.83061.13690.077*
H25B0.54710.75081.12180.077*
H25C0.46160.80451.06180.077*
C260.9386 (3)1.10751 (16)1.09100 (11)0.0429 (5)
H26A1.04431.09011.09150.051*
H26B0.90691.16801.10870.051*
O10.5918 (2)1.24745 (10)1.07174 (8)0.0472 (4)
O20.6234 (2)1.15134 (10)1.16213 (7)0.0466 (4)
O30.2674 (2)0.78454 (11)0.77637 (9)0.0544 (4)
O40.8037 (2)0.77818 (11)1.05593 (10)0.0617 (5)
O50.6898 (2)0.90860 (11)1.17396 (7)0.0485 (4)
H1O50.71630.85581.19070.058*
O60.41897 (17)1.00801 (12)1.10126 (8)0.0465 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (9)0.0236 (7)0.0311 (8)0.0013 (7)0.0004 (7)0.0008 (6)
C20.0322 (9)0.0238 (7)0.0295 (8)0.0008 (7)0.0008 (7)0.0006 (6)
C30.0352 (10)0.0299 (8)0.0365 (9)0.0057 (8)0.0024 (8)0.0049 (7)
C40.0348 (9)0.0282 (8)0.0375 (9)0.0073 (8)0.0057 (8)0.0025 (7)
C50.0288 (9)0.0265 (8)0.0291 (8)0.0009 (7)0.0010 (7)0.0010 (6)
C60.0334 (9)0.0303 (8)0.0362 (9)0.0002 (8)0.0034 (8)0.0013 (7)
C70.0468 (12)0.0338 (9)0.0319 (9)0.0007 (9)0.0064 (9)0.0024 (7)
C80.0513 (13)0.0410 (11)0.0516 (13)0.0118 (10)0.0063 (11)0.0160 (10)
C90.0407 (11)0.0352 (9)0.0378 (10)0.0111 (9)0.0046 (9)0.0064 (8)
C100.0282 (9)0.0300 (8)0.0285 (8)0.0025 (7)0.0025 (7)0.0004 (7)
C110.0268 (8)0.0265 (8)0.0265 (8)0.0016 (7)0.0018 (7)0.0012 (6)
C120.0299 (9)0.0406 (10)0.0331 (9)0.0070 (8)0.0009 (8)0.0012 (8)
C130.0309 (9)0.0345 (9)0.0360 (9)0.0056 (8)0.0044 (8)0.0009 (8)
C140.0451 (11)0.0336 (9)0.0329 (9)0.0053 (9)0.0056 (9)0.0001 (7)
C150.0445 (11)0.0279 (8)0.0313 (9)0.0043 (8)0.0031 (8)0.0014 (7)
C160.0373 (10)0.0308 (9)0.0284 (8)0.0032 (8)0.0007 (8)0.0023 (7)
C170.0331 (9)0.0318 (8)0.0302 (8)0.0006 (8)0.0011 (8)0.0027 (7)
C180.0344 (10)0.0303 (8)0.0376 (10)0.0015 (8)0.0026 (8)0.0041 (7)
C190.0606 (15)0.0438 (11)0.0450 (11)0.0037 (11)0.0107 (11)0.0153 (10)
C200.0450 (12)0.0331 (9)0.0396 (10)0.0096 (9)0.0007 (9)0.0069 (8)
C210.0339 (11)0.0461 (11)0.0624 (14)0.0015 (9)0.0053 (10)0.0104 (10)
C220.0533 (13)0.0453 (11)0.0358 (10)0.0002 (10)0.0068 (10)0.0038 (9)
C230.0356 (10)0.0544 (12)0.0328 (9)0.0030 (9)0.0050 (8)0.0065 (9)
C240.0362 (11)0.0583 (13)0.0543 (13)0.0131 (11)0.0111 (10)0.0098 (11)
C250.0584 (14)0.0319 (10)0.0642 (14)0.0127 (10)0.0048 (12)0.0048 (10)
C260.0375 (11)0.0417 (11)0.0496 (12)0.0050 (9)0.0073 (9)0.0005 (9)
O10.0638 (10)0.0288 (6)0.0490 (8)0.0075 (7)0.0084 (8)0.0050 (6)
O20.0698 (11)0.0342 (7)0.0359 (7)0.0028 (7)0.0037 (8)0.0064 (6)
O30.0614 (11)0.0355 (8)0.0664 (10)0.0091 (8)0.0145 (9)0.0019 (7)
O40.0825 (13)0.0312 (7)0.0716 (11)0.0123 (8)0.0137 (10)0.0002 (7)
O50.0746 (12)0.0382 (7)0.0327 (7)0.0031 (8)0.0117 (7)0.0005 (6)
O60.0388 (8)0.0467 (8)0.0539 (9)0.0008 (7)0.0106 (7)0.0049 (7)
Geometric parameters (Å, º) top
C1—C171.529 (3)C13—C241.536 (3)
C1—C161.544 (3)C14—O41.210 (2)
C1—C181.545 (2)C14—C151.529 (3)
C1—C21.610 (2)C15—O51.433 (2)
C2—C31.538 (3)C15—C251.519 (3)
C2—C201.546 (3)C15—C161.536 (3)
C2—C111.566 (2)C16—O61.205 (2)
C3—C41.530 (3)C17—C261.319 (3)
C3—H3A0.9700C18—O11.186 (2)
C3—H3B0.9700C18—O21.340 (2)
C4—C51.531 (2)C19—O21.440 (2)
C4—H4A0.9700C19—H19A0.9600
C4—H4B0.9700C19—H19B0.9600
C5—C101.554 (2)C19—H19C0.9600
C5—C61.563 (3)C20—H20A0.9600
C5—H50.9800C20—H20B0.9600
C6—C71.532 (3)C20—H20C0.9600
C6—C211.535 (3)C21—H21A0.9600
C6—C221.544 (3)C21—H21B0.9600
C7—O31.207 (3)C21—H21C0.9600
C7—C81.495 (3)C22—H22A0.9600
C8—C91.536 (3)C22—H22B0.9600
C8—H8A0.9700C22—H22C0.9600
C8—H8B0.9700C23—H23A0.9600
C9—C101.541 (2)C23—H23B0.9600
C9—H9A0.9700C23—H23C0.9600
C9—H9B0.9700C24—H24A0.9600
C10—C231.541 (3)C24—H24B0.9600
C10—C111.572 (2)C24—H24C0.9600
C11—C121.538 (3)C25—H25A0.9600
C11—H110.9800C25—H25B0.9600
C12—C131.554 (3)C25—H25C0.9600
C12—H12A0.9700C26—H26A0.9300
C12—H12B0.9700C26—H26B0.9300
C13—C171.518 (3)O5—H1O50.8200
C13—C141.529 (3)
C17—C1—C16110.07 (14)C17—C13—C24114.00 (17)
C17—C1—C18110.75 (15)C14—C13—C24109.54 (17)
C16—C1—C18105.22 (15)C17—C13—C12108.14 (15)
C17—C1—C2108.47 (15)C14—C13—C12104.21 (16)
C16—C1—C2109.79 (14)C24—C13—C12108.61 (17)
C18—C1—C2112.51 (14)O4—C14—C13121.1 (2)
C3—C2—C20109.24 (15)O4—C14—C15119.7 (2)
C3—C2—C11109.27 (15)C13—C14—C15119.16 (16)
C20—C2—C11112.77 (15)O5—C15—C25112.11 (17)
C3—C2—C1111.30 (15)O5—C15—C14104.29 (17)
C20—C2—C1108.39 (14)C25—C15—C14112.63 (17)
C11—C2—C1105.86 (13)O5—C15—C16103.14 (14)
C4—C3—C2112.98 (16)C25—C15—C16110.30 (17)
C4—C3—H3A109.0C14—C15—C16113.86 (16)
C2—C3—H3A109.0O6—C16—C15119.46 (18)
C4—C3—H3B109.0O6—C16—C1120.88 (18)
C2—C3—H3B109.0C15—C16—C1119.63 (17)
H3A—C3—H3B107.8C26—C17—C13123.72 (19)
C3—C4—C5110.50 (15)C26—C17—C1123.45 (18)
C3—C4—H4A109.6C13—C17—C1112.61 (16)
C5—C4—H4A109.6O1—C18—O2123.17 (17)
C3—C4—H4B109.6O1—C18—C1127.27 (18)
C5—C4—H4B109.6O2—C18—C1109.54 (15)
H4A—C4—H4B108.1O2—C19—H19A109.5
C4—C5—C10110.34 (15)O2—C19—H19B109.5
C4—C5—C6113.65 (15)H19A—C19—H19B109.5
C10—C5—C6117.46 (15)O2—C19—H19C109.5
C4—C5—H5104.6H19A—C19—H19C109.5
C10—C5—H5104.6H19B—C19—H19C109.5
C6—C5—H5104.6C2—C20—H20A109.5
C7—C6—C21108.47 (17)C2—C20—H20B109.5
C7—C6—C22108.08 (17)H20A—C20—H20B109.5
C21—C6—C22107.68 (18)C2—C20—H20C109.5
C7—C6—C5107.91 (15)H20A—C20—H20C109.5
C21—C6—C5109.53 (17)H20B—C20—H20C109.5
C22—C6—C5114.99 (16)C6—C21—H21A109.5
O3—C7—C8120.95 (19)C6—C21—H21B109.5
O3—C7—C6122.0 (2)H21A—C21—H21B109.5
C8—C7—C6117.03 (18)C6—C21—H21C109.5
C7—C8—C9112.26 (18)H21A—C21—H21C109.5
C7—C8—H8A109.2H21B—C21—H21C109.5
C9—C8—H8A109.2C6—C22—H22A109.5
C7—C8—H8B109.2C6—C22—H22B109.5
C9—C8—H8B109.2H22A—C22—H22B109.5
H8A—C8—H8B107.9C6—C22—H22C109.5
C8—C9—C10112.73 (17)H22A—C22—H22C109.5
C8—C9—H9A109.0H22B—C22—H22C109.5
C10—C9—H9A109.0C10—C23—H23A109.5
C8—C9—H9B109.0C10—C23—H23B109.5
C10—C9—H9B109.0H23A—C23—H23B109.5
H9A—C9—H9B107.8C10—C23—H23C109.5
C23—C10—C9108.29 (16)H23A—C23—H23C109.5
C23—C10—C5114.92 (15)H23B—C23—H23C109.5
C9—C10—C5107.32 (16)C13—C24—H24A109.5
C23—C10—C11112.61 (16)C13—C24—H24B109.5
C9—C10—C11107.17 (14)H24A—C24—H24B109.5
C5—C10—C11106.16 (14)C13—C24—H24C109.5
C12—C11—C2110.55 (15)H24A—C24—H24C109.5
C12—C11—C10113.19 (15)H24B—C24—H24C109.5
C2—C11—C10116.54 (14)C15—C25—H25A109.5
C12—C11—H11105.1C15—C25—H25B109.5
C2—C11—H11105.1H25A—C25—H25B109.5
C10—C11—H11105.1C15—C25—H25C109.5
C11—C12—C13112.61 (15)H25A—C25—H25C109.5
C11—C12—H12A109.1H25B—C25—H25C109.5
C13—C12—H12A109.1C17—C26—H26A120.0
C11—C12—H12B109.1C17—C26—H26B120.0
C13—C12—H12B109.1H26A—C26—H26B120.0
H12A—C12—H12B107.8C18—O2—C19115.72 (16)
C17—C13—C14111.82 (16)C15—O5—H1O5109.5
C17—C1—C2—C3179.65 (14)C5—C10—C11—C254.13 (19)
C16—C1—C2—C359.35 (19)C2—C11—C12—C1358.8 (2)
C18—C1—C2—C357.47 (19)C10—C11—C12—C13168.36 (15)
C17—C1—C2—C2060.19 (18)C11—C12—C13—C1755.3 (2)
C16—C1—C2—C20179.50 (15)C11—C12—C13—C1463.8 (2)
C18—C1—C2—C2062.69 (19)C11—C12—C13—C24179.52 (17)
C17—C1—C2—C1161.04 (17)C17—C13—C14—O4167.3 (2)
C16—C1—C2—C1159.27 (18)C24—C13—C14—O440.0 (3)
C18—C1—C2—C11176.09 (15)C12—C13—C14—O476.1 (2)
C20—C2—C3—C474.34 (19)C17—C13—C14—C1511.4 (2)
C11—C2—C3—C449.46 (19)C24—C13—C14—C15138.78 (18)
C1—C2—C3—C4166.01 (14)C12—C13—C14—C15105.16 (19)
C2—C3—C4—C558.4 (2)O4—C14—C15—O595.3 (2)
C3—C4—C5—C1063.8 (2)C13—C14—C15—O583.44 (19)
C3—C4—C5—C6161.82 (16)O4—C14—C15—C2526.5 (3)
C4—C5—C6—C7179.97 (16)C13—C14—C15—C25154.76 (18)
C10—C5—C6—C749.0 (2)O4—C14—C15—C16153.0 (2)
C4—C5—C6—C2162.1 (2)C13—C14—C15—C1628.2 (2)
C10—C5—C6—C21166.93 (17)O5—C15—C16—O691.8 (2)
C4—C5—C6—C2259.3 (2)C25—C15—C16—O628.1 (3)
C10—C5—C6—C2271.7 (2)C14—C15—C16—O6155.85 (18)
C21—C6—C7—O315.0 (3)O5—C15—C16—C186.0 (2)
C22—C6—C7—O3101.4 (2)C25—C15—C16—C1154.06 (18)
C5—C6—C7—O3133.6 (2)C14—C15—C16—C126.3 (2)
C21—C6—C7—C8165.2 (2)C17—C1—C16—O6163.11 (18)
C22—C6—C7—C878.4 (2)C18—C1—C16—O643.8 (2)
C5—C6—C7—C846.6 (2)C2—C1—C16—O677.6 (2)
O3—C7—C8—C9128.7 (2)C17—C1—C16—C1514.7 (2)
C6—C7—C8—C951.5 (3)C18—C1—C16—C15134.06 (16)
C7—C8—C9—C1055.0 (3)C2—C1—C16—C15104.64 (18)
C8—C9—C10—C2370.2 (2)C14—C13—C17—C26129.3 (2)
C8—C9—C10—C554.4 (2)C24—C13—C17—C264.4 (3)
C8—C9—C10—C11168.11 (17)C12—C13—C17—C26116.5 (2)
C4—C5—C10—C2365.9 (2)C14—C13—C17—C155.9 (2)
C6—C5—C10—C2366.6 (2)C24—C13—C17—C1179.19 (18)
C4—C5—C10—C9173.62 (15)C12—C13—C17—C158.3 (2)
C6—C5—C10—C953.9 (2)C16—C1—C17—C26128.2 (2)
C4—C5—C10—C1159.28 (18)C18—C1—C17—C2612.3 (3)
C6—C5—C10—C11168.29 (14)C2—C1—C17—C26111.7 (2)
C3—C2—C11—C12179.43 (15)C16—C1—C17—C1357.01 (19)
C20—C2—C11—C1258.88 (19)C18—C1—C17—C13172.94 (15)
C1—C2—C11—C1259.47 (17)C2—C1—C17—C1363.13 (18)
C3—C2—C11—C1049.48 (19)C17—C1—C18—O1108.2 (2)
C20—C2—C11—C1072.2 (2)C16—C1—C18—O1132.9 (2)
C1—C2—C11—C10169.43 (14)C2—C1—C18—O113.4 (3)
C23—C10—C11—C1257.4 (2)C17—C1—C18—O270.5 (2)
C9—C10—C11—C1261.6 (2)C16—C1—C18—O248.4 (2)
C5—C10—C11—C12176.01 (14)C2—C1—C18—O2167.95 (16)
C23—C10—C11—C272.4 (2)O1—C18—O2—C194.0 (3)
C9—C10—C11—C2168.58 (16)C1—C18—O2—C19177.29 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O3i0.822.052.870 (2)173
C23—H23A···O5ii0.962.683.173 (2)112
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+3/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H36O6
Mr444.55
Crystal system, space groupOrthorhombic, P212121
Temperature (K)290
a, b, c (Å)8.5023 (2), 13.5405 (2), 19.7127 (4)
V3)2269.43 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.28 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27134, 2938, 2677
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.03
No. of reflections2938
No. of parameters297
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.13
Absolute structure[αD] = -4.97° and results in dos Santos & Rodrigues-Fo (2002)

Computer programs: APEX2, COSMO and BIS (Bruker, 2006), SAINT (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O3i0.822.052.870 (2)173
Symmetry code: (i) x+1/2, y+3/2, z+2.
 

Acknowledgements

We thank FAPESP, CNPq and CAPES for financial support. Professor R. A. Burrow of the Federal University of Santa Maria is gratefully acknowledged for helping with the collection of the intensity data.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, COSMO, BIS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434.  CrossRef CAS Web of Science Google Scholar
First citationSantos, R. M. G. dos & Rodrigues-Fo, E. (2002). Phytochemistry, 61, 907–912.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds