organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-N-(3,4,5-tri­meth­oxy­benzyl­­idene)aniline

aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, bInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and cDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 26 January 2009; accepted 28 January 2009; online 31 January 2009)

The title compound, C16H16BrNO3, adopts an E configuration with respect to the imine C=N bond. The two benzene rings are twisted with respect to each other at an angle of 38.3 (1)°. In the crystal structure, mol­ecules are connected by weak bifurcated C—H⋯(O, O) hydrogen bonds, forming a helical chain along the b axis.

Related literature

The structure of the isotypic 4-chloro compound was reported by Khalaji et al. (2009[Khalaji, A. D., Asghari, J., Fejfarová, K. & Dušek, M. (2009). Acta Cryst. E65, o253.]). For structures containing a 4-bromo­aniline unit, see: Khalaji et al. (2007[Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.]); Khalaji & Harrison (2008[Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3-x4.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16BrNO3

  • Mr = 350.21

  • Monoclinic, P 21

  • a = 7.1951 (4) Å

  • b = 8.3722 (5) Å

  • c = 13.2882 (8) Å

  • β = 104.413 (3)°

  • V = 775.27 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 296 (2) K

  • 0.40 × 0.30 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.403, Tmax = 0.671

  • 18229 measured reflections

  • 3497 independent reflections

  • 3064 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.09

  • 3497 reflections

  • 193 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1511 Friedel pairs

  • Flack parameter: 0.012 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.63 3.272 (2) 127
C7—H7⋯O2i 0.93 2.63 3.553 (3) 172
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Recently, we reported two Schiff-base compounds with 4-bromoaniline units that have been structurally characterized (Khalaji et al., 2007; Khalaji & Harrison, 2008). In continuation of these studies, the title compound was prepared and its structure has been determined.

An ORTEP plot, with the atomic numbering scheme is depicted in Fig. 1. The two benzene rings are twisted with respect to each other at an angle of 38.3 (1)°. In the crystal structure, the molecules are connected by weak bifurcated C—H···(O, O) hydrogen bonds, forming a helical chain along the b axis.

The C7N1 bond length of 1.268 (3) Å conforms to the value for a double bond, and is slightly shorter than the corresponding bond length in N-(2-benzylidenepropylidene)-4-bromoaniline [C23N23 1.288 (6) Å; Khalaji et al., 2007] and β-phenylcinnamaldehyde-4-bromoaniline [C7N1 1.277 (4) Å; Khalaji & Harrison, 2008]. The C4—N1 bond length of 1.421 (2) Å conforms to the value for a single bond, and, in turn, is slightly longer than the corresponding bond length in N-(2-benzylidenepropylidene)-4-bromoaniline [C24—N23 1.411 (7) Å] and β-phenylcinnamaldehyde-4-bromoaniline [C6—N1 1.407 (4) Å]. All other bond lengths in the three related Schiff-base compounds are quite similar. For the title compound, the torsion angle, C8—C7—N1—C4, is 179.20 (18)°, indicating a virtually planar E-configuration with respect to the imine CN bond (Khalaji et al., 2007; Khalaji & Harrison, 2008).

In comparison with the isotypic structure of C16H16ClNO3 (Dehno Khalaji et al., 2009), all interatomic distances and angles (except those involving the halogen atom) are very similar.

Related literature top

The structure of the isotypic 4-chloro compound was reported by Dehno Khalaji et al. (2009). For structures containing a 4-bromoaniline unit, see: Khalaji et al. (2007); Khalaji & Harrison (2008).

Experimental top

The title compound was prepared by the reaction of 3,4,5-trimethoxybenzaldehyde (1 mmol, 0.196 g) and 4-bromoaniline (1 mmol, 0.172 g), which were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 30 min. Colourless single crystals suitable for X-ray structure analysis were obtained by recrystallization from a methanol/chloroform (1:1 v/v) solution.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C), allowing for free rotation of the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labelling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. Hydrogen atoms are denoted by spheres of arbitrary radius.
[Figure 2] Fig. 2. A partial packing diagram, viewed along the a axis. H atoms not involved in the C—H···O hydrogen bonds have been omitted.
4-Bromo-N-(3,4,5-trimethoxybenzylidene)aniline top
Crystal data top
C16H16BrNO3F(000) = 356
Mr = 350.21Dx = 1.500 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9957 reflections
a = 7.1951 (4) Åθ = 2.9–29.0°
b = 8.3722 (5) ŵ = 2.66 mm1
c = 13.2882 (8) ÅT = 296 K
β = 104.413 (3)°Block, colourless
V = 775.27 (8) Å30.40 × 0.30 × 0.15 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3497 independent reflections
Radiation source: fine-focus sealed tube3064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 99
Tmin = 0.403, Tmax = 0.671k = 1010
18229 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.0173P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
3497 reflectionsΔρmax = 0.30 e Å3
193 parametersΔρmin = 0.53 e Å3
1 restraintAbsolute structure: Flack (1983), 1511 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (6)
Crystal data top
C16H16BrNO3V = 775.27 (8) Å3
Mr = 350.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.1951 (4) ŵ = 2.66 mm1
b = 8.3722 (5) ÅT = 296 K
c = 13.2882 (8) Å0.40 × 0.30 × 0.15 mm
β = 104.413 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3497 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3064 reflections with I > 2σ(I)
Tmin = 0.403, Tmax = 0.671Rint = 0.023
18229 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.30 e Å3
S = 1.09Δρmin = 0.53 e Å3
3497 reflectionsAbsolute structure: Flack (1983), 1511 Friedel pairs
193 parametersAbsolute structure parameter: 0.012 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.99402 (3)0.96811 (5)0.988948 (16)0.06694 (9)
O10.26888 (18)0.4772 (2)0.36904 (9)0.0522 (3)
O20.46171 (19)0.29368 (19)0.46988 (11)0.0498 (3)
O30.3668 (2)0.2687 (2)0.67538 (12)0.0600 (4)
N10.2656 (2)0.6014 (2)0.79047 (14)0.0502 (4)
C10.7715 (3)0.8470 (2)0.92769 (15)0.0450 (4)
C20.6245 (3)0.8386 (3)0.97682 (18)0.0595 (6)
H20.63550.88911.04040.071*
C30.4614 (4)0.7546 (3)0.9308 (2)0.0604 (6)
H30.36340.74580.96480.072*
C40.4402 (3)0.6827 (2)0.83465 (15)0.0436 (4)
C50.5939 (3)0.6886 (3)0.78856 (16)0.0478 (5)
H50.58500.63680.72560.057*
C60.7594 (3)0.7705 (3)0.83532 (17)0.0498 (5)
H60.86180.77360.80430.060*
C70.2013 (3)0.6071 (2)0.69260 (16)0.0427 (4)
H70.27000.66510.65420.051*
C80.0246 (3)0.5272 (2)0.63686 (16)0.0411 (4)
C90.0833 (3)0.4364 (2)0.69019 (15)0.0432 (5)
H90.04540.42660.76210.052*
C100.2484 (3)0.3611 (2)0.63335 (16)0.0430 (4)
C110.3059 (3)0.3758 (2)0.52599 (16)0.0411 (4)
C120.1991 (2)0.4695 (3)0.47377 (12)0.0403 (3)
C130.0336 (3)0.5450 (2)0.53043 (16)0.0417 (4)
H130.03810.60780.49630.050*
C140.1666 (4)0.5679 (4)0.3108 (2)0.0785 (8)
H14A0.16410.67790.33160.118*
H14B0.22870.55910.23820.118*
H14C0.03770.52840.32320.118*
C150.6378 (3)0.3769 (4)0.4588 (2)0.0673 (7)
H15A0.65880.39720.52620.101*
H15B0.74120.31330.41890.101*
H15C0.63240.47650.42380.101*
C160.3111 (5)0.2366 (4)0.7828 (2)0.0761 (8)
H16A0.18130.19830.80100.114*
H16B0.39440.15690.79970.114*
H16C0.31980.33270.82080.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05738 (13)0.06441 (15)0.06520 (14)0.01188 (12)0.01083 (9)0.00513 (15)
O10.0556 (7)0.0567 (8)0.0431 (6)0.0113 (9)0.0100 (5)0.0013 (9)
O20.0463 (7)0.0467 (8)0.0547 (8)0.0096 (7)0.0092 (6)0.0106 (7)
O30.0588 (9)0.0704 (10)0.0506 (9)0.0236 (7)0.0135 (7)0.0033 (7)
N10.0478 (9)0.0533 (10)0.0498 (11)0.0107 (8)0.0126 (8)0.0056 (8)
C10.0423 (9)0.0395 (11)0.0456 (11)0.0019 (8)0.0036 (8)0.0007 (8)
C20.0630 (13)0.0664 (15)0.0468 (12)0.0018 (11)0.0094 (10)0.0168 (10)
C30.0582 (13)0.0769 (18)0.0500 (14)0.0086 (11)0.0208 (11)0.0114 (10)
C40.0425 (9)0.0441 (12)0.0418 (10)0.0030 (9)0.0060 (8)0.0009 (8)
C50.0463 (10)0.0538 (14)0.0400 (11)0.0014 (10)0.0044 (8)0.0099 (9)
C60.0408 (10)0.0595 (14)0.0466 (12)0.0002 (9)0.0060 (9)0.0020 (10)
C70.0376 (9)0.0393 (10)0.0504 (12)0.0019 (8)0.0095 (8)0.0013 (8)
C80.0355 (9)0.0337 (9)0.0524 (11)0.0014 (7)0.0076 (8)0.0044 (7)
C90.0418 (9)0.0433 (13)0.0442 (9)0.0024 (7)0.0101 (7)0.0026 (7)
C100.0434 (10)0.0377 (11)0.0497 (11)0.0038 (8)0.0148 (8)0.0041 (8)
C110.0378 (9)0.0345 (10)0.0503 (11)0.0006 (8)0.0097 (8)0.0080 (8)
C120.0412 (8)0.0356 (8)0.0449 (8)0.0025 (11)0.0122 (6)0.0028 (11)
C130.0397 (9)0.0371 (10)0.0502 (11)0.0020 (7)0.0148 (8)0.0011 (8)
C140.0817 (17)0.102 (2)0.0505 (14)0.0239 (16)0.0142 (13)0.0169 (14)
C150.0429 (11)0.0708 (17)0.0828 (18)0.0044 (12)0.0056 (11)0.0027 (13)
C160.0790 (17)0.086 (2)0.0611 (18)0.0228 (16)0.0134 (15)0.0180 (13)
Geometric parameters (Å, º) top
Br1—C11.8992 (19)C7—C81.464 (3)
O1—C121.358 (2)C7—H70.9300
O1—C141.414 (3)C8—C91.399 (3)
O2—C111.367 (2)C8—C131.379 (3)
O2—C151.421 (3)C9—H90.9300
O3—C161.409 (3)C10—C91.390 (3)
O3—C101.368 (2)C11—C101.388 (3)
C1—C21.376 (3)C12—C131.392 (3)
C1—C61.368 (3)C12—C111.397 (3)
C2—H20.9300C13—H130.9300
C3—C21.375 (3)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—N11.421 (2)C14—H14C0.9600
C4—C31.386 (3)C15—H15A0.9600
C4—C51.392 (3)C15—H15B0.9600
C5—C61.380 (3)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—N11.268 (3)C16—H16C0.9600
O1—C12—C11115.25 (16)C6—C1—Br1119.56 (16)
O1—C12—C13125.52 (17)C6—C1—C2121.14 (18)
O1—C14—H14A109.5C6—C5—C4120.69 (19)
O1—C14—H14B109.5C6—C5—H5119.7
O1—C14—H14C109.5C7—N1—C4117.70 (17)
O2—C11—C10120.65 (17)C8—C7—H7118.3
O2—C11—C12119.28 (17)C8—C9—H9120.7
O2—C15—H15A109.5C8—C13—C12120.43 (18)
O2—C15—H15B109.5C8—C13—H13119.8
O2—C15—H15C109.5C9—C8—C7120.90 (18)
O3—C10—C9124.70 (18)C10—O3—C16118.18 (19)
O3—C10—C11114.39 (17)C10—C9—C8118.58 (18)
O3—C16—H16A109.5C10—C9—H9120.7
O3—C16—H16B109.5C10—C11—C12120.00 (17)
O3—C16—H16C109.5C11—O2—C15113.49 (18)
N1—C7—C8123.41 (18)C11—C10—C9120.91 (17)
N1—C7—H7118.3C12—O1—C14118.41 (17)
C1—C2—H2120.4C13—C8—C9120.83 (17)
C1—C6—C5119.45 (19)C13—C8—C7118.27 (17)
C1—C6—H6120.3C13—C12—C11119.23 (16)
C2—C1—Br1119.30 (15)C12—C13—H13119.8
C2—C3—C4121.2 (2)H14A—C14—H14B109.5
C2—C3—H3119.4H14A—C14—H14C109.5
C3—C2—C1119.1 (2)H14B—C14—H14C109.5
C3—C2—H2120.4H15A—C15—H15B109.5
C3—C4—N1118.17 (18)H15A—C15—H15C109.5
C3—C4—C5118.22 (19)H15B—C15—H15C109.5
C4—C3—H3119.4H16A—C16—H16B109.5
C4—C5—H5119.7H16A—C16—H16C109.5
C5—C4—N1123.56 (17)H16B—C16—H16C109.5
C5—C6—H6120.3
Br1—C1—C2—C3178.2 (2)C6—C1—C2—C31.4 (4)
Br1—C1—C6—C5177.04 (17)C7—C8—C9—C10179.05 (17)
O1—C12—C11—O23.6 (3)C7—C8—C13—C12179.05 (18)
O1—C12—C11—C10179.35 (19)C8—C7—N1—C4179.19 (18)
O1—C12—C13—C8179.36 (19)C9—C10—O3—C165.2 (3)
O2—C11—C10—O34.2 (3)C9—C8—C13—C121.5 (3)
O2—C11—C10—C9175.96 (17)C11—C10—O3—C16174.9 (2)
O3—C10—C9—C8179.93 (18)C11—C12—C13—C80.2 (3)
N1—C4—C3—C2178.3 (2)C11—C10—C9—C80.2 (3)
N1—C4—C5—C6179.6 (2)C12—C11—C10—O3178.83 (19)
N1—C7—C8—C13178.51 (19)C12—C11—C10—C91.0 (3)
N1—C7—C8—C90.9 (3)C13—C8—C9—C101.5 (3)
C2—C1—C6—C52.6 (3)C13—C12—C11—O2175.99 (19)
C3—C4—N1—C7144.8 (2)C13—C12—C11—C101.0 (3)
C3—C4—C5—C63.0 (3)C14—O1—C12—C11179.1 (2)
C4—C3—C2—C12.0 (4)C14—O1—C12—C130.5 (3)
C4—C5—C6—C10.3 (4)C15—O2—C11—C1088.3 (2)
C5—C4—C3—C24.2 (4)C15—O2—C11—C1294.7 (2)
C5—C4—N1—C737.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.633.272 (2)127
C7—H7···O2i0.932.633.553 (3)172
Symmetry code: (i) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H16BrNO3
Mr350.21
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)7.1951 (4), 8.3722 (5), 13.2882 (8)
β (°) 104.413 (3)
V3)775.27 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.66
Crystal size (mm)0.40 × 0.30 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.403, 0.671
No. of measured, independent and
observed [I > 2σ(I)] reflections
18229, 3497, 3064
Rint0.023
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.09
No. of reflections3497
No. of parameters193
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.53
Absolute structureFlack (1983), 1511 Friedel pairs
Absolute structure parameter0.012 (6)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.633.272 (2)127
C7—H7···O2i0.932.633.553 (3)172
Symmetry code: (i) x, y+1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: alidkhalaji@yahoo.com.

References

First citationBruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhalaji, A. D., Asghari, J., Fejfarová, K. & Dušek, M. (2009). Acta Cryst. E65, o253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3–x4.  CAS Google Scholar
First citationKhalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds