supplementary materials


Acta Cryst. (2009). E65, o285    [ doi:10.1107/S1600536809000658 ]

1,4-Bis(3-pyridylmethyleneaminomethyl)benzene

M.-Y. He, C. Li, H. Xu, Z.-J. Hu and Q. Chen

Abstract top

The title compound, C20H18N4, is a flexible 3,3'-bipyridyl-type ligand with a long spacer group between the two pyridyl functions. The molecule crystallizes around an inversion center, with one half-molecule in the asymmetric unit and a dihedral angle of 71.85 (8)° between the pyridine ring and the central benzene ring.

Comment top

Bipyridyl-type bidentate Schiff base ligands have been utilized intensively to assemble various coordination polymers with interesting topologies and fascinating structural diversities (Cho et al., 2006; Mahmoudi et al., 2007; Wang et al., 2008). We report here the crystal structure of the title compound.

A perspective view of the title compound, including the atomic numbering scheme, is shown in Fig. 1. The title compound crystallizes around a crystallographic center with half a molecule in the asymmetric unit. The bond lengths and angles are within normal ranges. The terminal pyridyl groups are coplanar, and they form a dihedral angle of 71.85 (8)° with the central benzene ring. The molecular structure is stabilized by an intramolecular C9—H9···N2 bond (Table 1), but no classical intermolecular interactions have been found in the crystal packing of the title compound.

Related literature top

For background information on bipyridyl-type Schiff base ligands, see: Cho et al. (2006); Haga et al. (1985); Mahmoudi et al. (2007); Wang et al. (2008). Haga et al. (1985) describe the synthesis of the title compound.

Experimental top

The title compound was synthesized and purified according to the method described by by Haga et al. (1985), by the condensation reaction of pyridine-3-carboxaldehyde and 1,4-benzenedimethanamine (yield 83%). Colorless block single crystals (m.p. 397–397.2 K) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature. Analysis calclated for C20H18N4: C 76.41, H 5.77, N 17.82%; found: C 76.53, H 5.74, N 17.75%. IR (KBr pellet, cm-1): 3436 (b), 3060 (m), 3048 (m), 2942 (m), 2903 (m), 2849 (m), 1640 (s), 1586 (s), 1565 (s), 1469 (s), 1434 (s), 1359 (m), 1324 (m), 1150 (w), 1015 (m), 990 (m), 848 (s), 777 (s), 739 (m), 617 (w), 571 (m), 506 (m), 403 (w).

Refinement top

H atoms were assigned to calculated positions, with C—H = 0.97 (methylene) and 0.93Å (aromatic), and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (thermal ellipsoids are shown at 30% probability levels).
1,4-Bis(3-pyridylmethyleneaminomethyl)benzene top
Crystal data top
C20H18N4F(000) = 332
Mr = 314.38Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2797 reflections
a = 6.0990 (11) Åθ = 2.6–27.2°
b = 14.589 (3) ŵ = 0.08 mm1
c = 9.9481 (18) ÅT = 291 K
β = 107.851 (3)°Block, colorless
V = 842.5 (3) Å30.24 × 0.22 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
1661 independent reflections
Radiation source: sealed tube1085 reflections with I > 2σ(I)
graphiteRint = 0.045
φ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.98, Tmax = 0.98k = 1717
6535 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
1661 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C20H18N4V = 842.5 (3) Å3
Mr = 314.38Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.0990 (11) ŵ = 0.08 mm1
b = 14.589 (3) ÅT = 291 K
c = 9.9481 (18) Å0.24 × 0.22 × 0.20 mm
β = 107.851 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1085 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.98Rint = 0.045
6535 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.13 e Å3
S = 1.01Δρmin = 0.12 e Å3
1661 reflectionsAbsolute structure: ?
109 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0338 (3)0.59733 (9)0.90988 (16)0.0402 (4)
C20.2284 (3)0.63315 (11)1.00966 (18)0.0512 (4)
H20.37490.61421.01170.061*
C30.2005 (3)0.69698 (11)1.1050 (2)0.0592 (5)
H30.32780.72161.17280.071*
C40.0183 (4)0.72359 (11)1.0983 (2)0.0627 (5)
H40.03460.76731.16250.075*
C50.1780 (3)0.62821 (11)0.91503 (19)0.0522 (4)
H50.30910.60360.85060.063*
C60.0482 (3)0.53005 (10)0.80278 (16)0.0418 (4)
H60.08740.50640.74160.050*
C70.2348 (3)0.43652 (11)0.68220 (17)0.0475 (4)
H7A0.07710.42550.62470.057*
H7B0.29810.37910.72640.057*
C80.3738 (3)0.46922 (10)0.58876 (15)0.0390 (4)
C90.3934 (3)0.56235 (10)0.56217 (16)0.0430 (4)
H90.32230.60500.60440.052*
C100.5155 (3)0.59265 (10)0.47492 (17)0.0424 (4)
H100.52390.65510.45850.051*
N10.2079 (3)0.69096 (10)1.00596 (19)0.0667 (5)
N20.2369 (2)0.50359 (9)0.79117 (15)0.0489 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (9)0.0402 (7)0.0394 (9)0.0009 (6)0.0165 (7)0.0070 (6)
C20.0458 (10)0.0571 (10)0.0500 (10)0.0002 (8)0.0134 (8)0.0032 (8)
C30.0643 (12)0.0516 (10)0.0579 (12)0.0079 (8)0.0134 (9)0.0118 (8)
C40.0786 (14)0.0431 (9)0.0738 (13)0.0012 (9)0.0345 (11)0.0131 (9)
C50.0470 (9)0.0501 (9)0.0600 (11)0.0011 (8)0.0169 (8)0.0034 (8)
C60.0425 (9)0.0458 (8)0.0374 (9)0.0011 (6)0.0127 (7)0.0029 (6)
C70.0467 (9)0.0508 (8)0.0462 (9)0.0005 (7)0.0161 (7)0.0041 (7)
C80.0379 (8)0.0423 (7)0.0333 (9)0.0013 (6)0.0055 (6)0.0063 (6)
C90.0464 (9)0.0423 (7)0.0414 (9)0.0065 (7)0.0149 (7)0.0081 (7)
C100.0477 (9)0.0346 (7)0.0442 (9)0.0017 (6)0.0129 (7)0.0025 (6)
N10.0609 (10)0.0550 (9)0.0887 (13)0.0041 (8)0.0297 (9)0.0173 (8)
N20.0478 (8)0.0624 (9)0.0393 (8)0.0002 (6)0.0175 (6)0.0074 (6)
Geometric parameters (Å, °) top
C1—C51.384 (2)C6—H60.9300
C1—C21.395 (2)C7—N21.458 (2)
C1—C61.471 (2)C7—C81.514 (2)
C2—C31.376 (2)C7—H7A0.9700
C2—H20.9300C7—H7B0.9700
C3—C41.372 (3)C8—C10i1.391 (2)
C3—H30.9300C8—C91.396 (2)
C4—N11.325 (3)C9—C101.378 (2)
C4—H40.9300C9—H90.9300
C5—N11.338 (2)C10—C8i1.391 (2)
C5—H50.9300C10—H100.9300
C6—N21.253 (2)
C5—C1—C2116.88 (15)N2—C7—C8111.49 (13)
C5—C1—C6120.51 (15)N2—C7—H7A109.3
C2—C1—C6122.61 (14)C8—C7—H7A109.3
C3—C2—C1119.09 (16)N2—C7—H7B109.3
C3—C2—H2120.5C8—C7—H7B109.3
C1—C2—H2120.5H7A—C7—H7B108.0
C4—C3—C2118.78 (18)C10i—C8—C9117.60 (13)
C4—C3—H3120.6C10i—C8—C7121.10 (13)
C2—C3—H3120.6C9—C8—C7121.30 (12)
N1—C4—C3124.15 (17)C10—C9—C8121.72 (13)
N1—C4—H4117.9C10—C9—H9119.1
C3—C4—H4117.9C8—C9—H9119.1
N1—C5—C1124.74 (18)C9—C10—C8i120.68 (13)
N1—C5—H5117.6C9—C10—H10119.7
C1—C5—H5117.6C8i—C10—H10119.7
N2—C6—C1122.21 (15)C4—N1—C5116.34 (16)
N2—C6—H6118.9C6—N2—C7118.48 (14)
C1—C6—H6118.9
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N20.932.552.858 (2)100
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C9—H9···N20.932.552.858 (2)100
Acknowledgements top

The authors thank the Center for Testing and Analysis at Yangzhou University for support.

references
References top

Bruker (2000). SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.

Cho, B. Y., Min, D. W. & Lee, S. W. (2006). Cryst. Growth Des. 6, 342–347.

Haga, M. & Koizumi, K. (1985). Inorg. Chim. Acta, 104, 47–50.

Mahmoudi, G., Morsali, A., Hunter, A. D. & Zeller, M. (2007). CrystEngComm, 9, 704–714.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, Q., Yang, R., Zhuang, C. F., Zhang, J. Y., Kang, B. S. & Su, C. Y. (2008). Eur. J. Inorg. Chem. 10, 1702–1711.