metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m315-m316
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Di­aqua­bis­(pyridine-2-carboxyl­ato-κ2N,O)iron(II)

aInstitute of Applied Materials, College of Resource & Environmental Management, Jiangxi University of Finance & Economics, Nanchang, Jiangxi 330013, People's Republic of China, and bDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
*Correspondence e-mail: guohuaxia09@126.com

(Received 15 February 2009; accepted 18 February 2009; online 25 February 2009)

The FeII atom in the title complex, [Fe(C6H4NO2)2(H2O)2], exists in a distorted octa­hedral coordination geometry defined by two O and two N atoms from two pyridine-2-carboxyl­ate ligands and two O atoms of two water mol­ecules. In the crystal structure, mol­ecules are linked into a three-dimensional framework by O—H⋯O hydrogen bonds.

Related literature

For the design and construction of metal-organic supramolecular structures, see: Desiraju (1997[Desiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 1475-1476.]); Braga et al. (1998[Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1386.]); Mccann et al. (1996[Mccann, M., Casey, M. T., Devereux, M., Curran, M. & Cardin, C. (1996). Polyhedron, 15, 2117-2120.]); Wai et al. (1990[Wai, H. Y., Ru, J. W. & Mark, T. C. W. (1990). J. Crystallogr. Spectrosc. Res. 20, 307-312.]); Yaghi et al. (1996[Yaghi, O. M., Li, H. & Groy, T. L. (1996). J. Am. Chem. Soc. 118, 9096-9101.]); Min & Lee (2002[Min, D. & Lee, S. M. (2002). Inorg. Chem. Commun. 5, 978-983.]); Maira et al. (2001[Maira, S. M., Galetic, I., Brazil, D. P., Decech, S., Ingley, E., thelen, M. & Hemmings, B. A. (2001). Science, 294, 374-380.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C6H4NO2)2(H2O)2]

  • Mr = 336.09

  • Monoclinic, P 21 /n

  • a = 11.6255 (3) Å

  • b = 9.0247 (4) Å

  • c = 14.9724 (2) Å

  • β = 105.568 (2)°

  • V = 1513.22 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.23 × 0.19 × 0.07 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.796, Tmax = 0.928

  • 10191 measured reflections

  • 3283 independent reflections

  • 2158 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.166

  • S = 1.08

  • 3283 reflections

  • 201 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—O1 2.163 (2)
Fe1—O2 2.148 (3)
Fe1—O3 2.164 (2)
Fe1—O5 2.154 (2)
Fe1—N1 2.262 (3)
Fe1—N2 2.279 (2)
O1—Fe1—O2 84.52 (10)
O1—Fe1—O3 167.30 (9)
O1—Fe1—O5 98.68 (10)
O2—Fe1—O3 92.66 (10)
O2—Fe1—O5 95.00 (10)
O3—Fe1—O5 93.89 (9)
O1—Fe1—N1 86.39 (10)
O2—Fe1—N1 163.77 (12)
O3—Fe1—N1 99.03 (10)
O5—Fe1—N1 73.12 (9)
O1—Fe1—N2 93.92 (9)
O2—Fe1—N2 99.14 (10)
O3—Fe1—N2 74.26 (9)
O5—Fe1—N2 161.88 (9)
N1—Fe1—N2 94.86 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O4i 0.805 (18) 1.93 (2) 2.726 (3) 169 (4)
O1—H1A⋯O5ii 0.82 1.87 2.661 (3) 161
O2—H2B⋯O4iii 0.82 (5) 1.92 (5) 2.704 (3) 159 (6)
O2—H2A⋯O6ii 0.82 1.94 2.697 (4) 153
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1997; Braga et al., 1998). Due to carboxyl groups are one of the most important classes of biological ligands, the coordination of metal-carboxyl groups complexes are of critical importance in biological systems, organic materials and coordination chemistry. Recently, carboxyl groups with variable coordination modes have been used to construct metal-organic supramolecular structures (Mccann et al., 1996; Wai et al., 1990; Yaghi et al., 1996; Min & Lee 2002; Maira et al., 2001). We report here in the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). In the title complex, each FeII atom is axially coordinated by water molecules and consists of an equatorial plane of two oxygen donors and two nitrogen donors from two pyridine-2-carboxylato ligands with a distorted octahedral coordination geometry. The Fe—O bonds [average 2.152 (4) Å] are somewhat shorter than the Fe—N distances [average 2.270 (8) Å].

In the crystal structure, O—H···O hydrogen bonds (Fig. 2 and Table 2) seem to be effective in the stabilization of the structure, resulting in the formation of a supramolecular network structure.

Related literature top

For general backgroud, see: Desiraju (1997); Braga et al. (1998); Mccann et al. (1996); Wai et al. (1990); Yaghi et al. (1996); Min & Lee (2002); Maira et al. (2001). For bond length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Iron(II) chloride tetrahydrate (198.71 mg, 1 mmol), pyridine-2-carboxylic acid (246 mg, 2 mmol) and distilled water (10 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 433 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small purple crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H1B and H2B (for two water molecules) were located in difference syntheses and refined isotropically [O—H = 0.805 (18) and 0.82 (5) Å, Uiso(H) = 0.093 (15) and 0.18 (3) Å2]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for H2O) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H atoms and x = 1.5 for all other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Diaquabis(pyridine-2-carboxylato-κ2N,O)iron(II) top
Crystal data top
[Fe(C6H4NO2)2(H2O)2]F(000) = 688
Mr = 336.09Dx = 1.475 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2834 reflections
a = 11.6255 (3) Åθ = 2.4–24.8°
b = 9.0247 (4) ŵ = 1.02 mm1
c = 14.9724 (2) ÅT = 293 K
β = 105.568 (2)°Plane, purple
V = 1513.22 (8) Å30.23 × 0.19 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
3283 independent reflections
Radiation source: fine-focus sealed tube2158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 27.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.796, Tmax = 0.928k = 1111
10191 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.089P)2 + 0.0485P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3283 reflectionsΔρmax = 0.72 e Å3
201 parametersΔρmin = 0.47 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (16)
Crystal data top
[Fe(C6H4NO2)2(H2O)2]V = 1513.22 (8) Å3
Mr = 336.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6255 (3) ŵ = 1.02 mm1
b = 9.0247 (4) ÅT = 293 K
c = 14.9724 (2) Å0.23 × 0.19 × 0.07 mm
β = 105.568 (2)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
3283 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2158 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.928Rint = 0.043
10191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0516 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.72 e Å3
3283 reflectionsΔρmin = 0.47 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.74557 (4)0.85895 (5)0.62770 (3)0.0492 (2)
O10.8189 (2)0.7456 (3)0.75783 (16)0.0565 (6)
H1A0.76460.70750.77520.085*
O20.5913 (2)0.8895 (3)0.6788 (2)0.0606 (7)
H2A0.59610.83510.72350.091*
O30.65069 (19)0.9271 (3)0.48892 (15)0.0527 (6)
O40.5389 (2)0.8582 (3)0.35014 (17)0.0592 (7)
O50.8181 (2)1.0762 (3)0.66750 (16)0.0540 (6)
O60.9719 (3)1.2298 (3)0.6897 (2)0.0772 (8)
N10.9337 (3)0.8594 (3)0.6119 (2)0.0534 (7)
N20.6907 (2)0.6454 (3)0.54619 (18)0.0435 (6)
C10.6030 (3)0.8306 (4)0.4297 (2)0.0454 (7)
C20.6264 (3)0.6693 (3)0.4578 (2)0.0418 (7)
C30.5833 (3)0.5536 (4)0.3976 (2)0.0561 (9)
H30.54070.57240.33670.067*
C40.6042 (3)0.4112 (4)0.4288 (3)0.0587 (9)
H40.57420.33200.38970.070*
C50.6703 (3)0.3863 (4)0.5188 (3)0.0580 (9)
H50.68640.29000.54070.070*
C60.7123 (3)0.5052 (4)0.5758 (2)0.0530 (8)
H60.75680.48800.63650.064*
C70.9225 (3)1.1079 (4)0.6662 (2)0.0538 (8)
C80.9906 (3)0.9877 (4)0.6345 (2)0.0514 (8)
C91.1059 (3)1.0068 (5)0.6312 (3)0.0731 (11)
H91.14481.09670.64810.088*
C101.1632 (4)0.8908 (6)0.6027 (4)0.0974 (17)
H101.24060.90230.59740.117*
C111.1060 (4)0.7585 (6)0.5820 (4)0.108 (2)
H111.14520.67710.56590.130*
C120.9911 (4)0.7474 (5)0.5854 (3)0.0813 (13)
H120.95100.65830.56860.098*
H1B0.8859 (15)0.715 (5)0.778 (3)0.093 (15)*
H2B0.539 (5)0.953 (5)0.673 (4)0.18 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0490 (3)0.0448 (4)0.0474 (3)0.0005 (2)0.0020 (2)0.00062 (19)
O10.0430 (12)0.0648 (16)0.0542 (14)0.0009 (12)0.0002 (10)0.0158 (11)
O20.0602 (15)0.0518 (15)0.0723 (18)0.0102 (12)0.0223 (13)0.0148 (12)
O30.0536 (13)0.0450 (14)0.0507 (13)0.0018 (10)0.0013 (10)0.0043 (10)
O40.0566 (14)0.0563 (16)0.0512 (14)0.0076 (11)0.0091 (10)0.0080 (10)
O50.0489 (13)0.0466 (13)0.0659 (15)0.0013 (10)0.0144 (10)0.0088 (11)
O60.0798 (18)0.0646 (18)0.096 (2)0.0277 (15)0.0388 (15)0.0312 (15)
N10.0535 (16)0.0470 (18)0.0624 (18)0.0004 (13)0.0205 (13)0.0032 (13)
N20.0437 (13)0.0411 (15)0.0403 (14)0.0004 (11)0.0018 (10)0.0027 (10)
C10.0345 (14)0.054 (2)0.0428 (17)0.0025 (13)0.0016 (12)0.0015 (14)
C20.0361 (14)0.0442 (18)0.0418 (16)0.0003 (12)0.0045 (11)0.0028 (13)
C30.0540 (19)0.057 (2)0.0473 (18)0.0048 (16)0.0028 (14)0.0067 (16)
C40.059 (2)0.047 (2)0.065 (2)0.0017 (17)0.0074 (17)0.0142 (17)
C50.064 (2)0.043 (2)0.070 (2)0.0023 (16)0.0226 (18)0.0010 (16)
C60.0591 (18)0.047 (2)0.0489 (18)0.0017 (16)0.0080 (14)0.0045 (15)
C70.059 (2)0.057 (2)0.0445 (18)0.0115 (16)0.0121 (15)0.0065 (15)
C80.0509 (17)0.058 (2)0.0456 (17)0.0039 (16)0.0140 (13)0.0021 (15)
C90.061 (2)0.075 (3)0.088 (3)0.008 (2)0.029 (2)0.001 (2)
C100.070 (3)0.095 (4)0.143 (5)0.002 (3)0.055 (3)0.007 (3)
C110.090 (3)0.077 (3)0.183 (6)0.013 (3)0.081 (4)0.007 (3)
C120.076 (3)0.056 (3)0.124 (4)0.003 (2)0.047 (3)0.007 (2)
Geometric parameters (Å, º) top
Fe1—O12.163 (2)C1—C21.520 (4)
Fe1—O22.148 (3)C2—C31.382 (4)
Fe1—O32.164 (2)C3—C41.366 (5)
Fe1—O52.154 (2)C3—H30.9300
Fe1—N12.262 (3)C4—C51.379 (5)
Fe1—N22.279 (2)C4—H40.9300
O1—H1A0.8200C5—C61.377 (5)
O1—H1B0.805 (18)C5—H50.9300
O2—H2A0.8200C6—H60.9300
O2—H2B0.82 (5)C7—C81.494 (5)
O3—C11.260 (4)C8—C91.365 (5)
O4—C11.249 (4)C9—C101.369 (6)
O5—C71.251 (4)C9—H90.9300
O6—C71.247 (4)C10—C111.361 (7)
N1—C121.329 (5)C10—H100.9300
N1—C81.332 (4)C11—C121.353 (6)
N2—C61.342 (4)C11—H110.9300
N2—C21.351 (4)C12—H120.9300
O1—Fe1—O284.52 (10)N2—C2—C1115.8 (3)
O1—Fe1—O3167.30 (9)C3—C2—C1122.4 (3)
O1—Fe1—O598.68 (10)C4—C3—C2119.2 (3)
O2—Fe1—O392.66 (10)C4—C3—H3120.4
O2—Fe1—O595.00 (10)C2—C3—H3120.4
O3—Fe1—O593.89 (9)C3—C4—C5119.2 (3)
O1—Fe1—N186.39 (10)C3—C4—H4120.4
O2—Fe1—N1163.77 (12)C5—C4—H4120.4
O3—Fe1—N199.03 (10)C6—C5—C4119.4 (3)
O5—Fe1—N173.12 (9)C6—C5—H5120.3
O1—Fe1—N293.92 (9)C4—C5—H5120.3
O2—Fe1—N299.14 (10)N2—C6—C5121.7 (3)
O3—Fe1—N274.26 (9)N2—C6—H6119.1
O5—Fe1—N2161.88 (9)C5—C6—H6119.1
N1—Fe1—N294.86 (10)O6—C7—O5124.9 (3)
Fe1—O1—H1A109.5O6—C7—C8119.1 (3)
Fe1—O1—H1B128 (3)O5—C7—C8116.0 (3)
H1A—O1—H1B119.0N1—C8—C9121.7 (3)
Fe1—O2—H2A109.5N1—C8—C7116.3 (3)
Fe1—O2—H2B136 (3)C9—C8—C7122.0 (3)
H2A—O2—H2B112.5C8—C9—C10118.6 (4)
C1—O3—Fe1119.6 (2)C8—C9—H9120.7
C7—O5—Fe1120.9 (2)C10—C9—H9120.7
C12—N1—C8118.8 (3)C11—C10—C9119.5 (4)
C12—N1—Fe1127.4 (3)C11—C10—H10120.2
C8—N1—Fe1113.8 (2)C9—C10—H10120.2
C6—N2—C2118.7 (3)C12—C11—C10118.9 (4)
C6—N2—Fe1128.3 (2)C12—C11—H11120.5
C2—N2—Fe1113.04 (19)C10—C11—H11120.5
O4—C1—O3124.8 (3)N1—C12—C11122.3 (4)
O4—C1—C2118.1 (3)N1—C12—H12118.8
O3—C1—C2117.0 (3)C11—C12—H12118.8
N2—C2—C3121.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O4i0.81 (2)1.93 (2)2.726 (3)169 (4)
O1—H1A···O5ii0.821.872.661 (3)161
O2—H2B···O4iii0.82 (5)1.92 (5)2.704 (3)159 (6)
O2—H2A···O6ii0.821.942.697 (4)153
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C6H4NO2)2(H2O)2]
Mr336.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.6255 (3), 9.0247 (4), 14.9724 (2)
β (°) 105.568 (2)
V3)1513.22 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.23 × 0.19 × 0.07
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.796, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
10191, 3283, 2158
Rint0.043
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.166, 1.08
No. of reflections3283
No. of parameters201
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.47

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe1—O12.163 (2)Fe1—O52.154 (2)
Fe1—O22.148 (3)Fe1—N12.262 (3)
Fe1—O32.164 (2)Fe1—N22.279 (2)
O1—Fe1—O284.52 (10)O3—Fe1—N199.03 (10)
O1—Fe1—O3167.30 (9)O5—Fe1—N173.12 (9)
O1—Fe1—O598.68 (10)O1—Fe1—N293.92 (9)
O2—Fe1—O392.66 (10)O2—Fe1—N299.14 (10)
O2—Fe1—O595.00 (10)O3—Fe1—N274.26 (9)
O3—Fe1—O593.89 (9)O5—Fe1—N2161.88 (9)
O1—Fe1—N186.39 (10)N1—Fe1—N294.86 (10)
O2—Fe1—N1163.77 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O4i0.805 (18)1.93 (2)2.726 (3)169 (4)
O1—H1A···O5ii0.821.872.661 (3)161
O2—H2B···O4iii0.82 (5)1.92 (5)2.704 (3)159 (6)
O2—H2A···O6ii0.821.942.697 (4)153
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y+2, z+1.
 

Acknowledgements

We thank the Youth Program of Jiangxi University of Finance and Economics for financial support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1386.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (1997). J. Chem. Soc. Chem. Commun. pp. 1475–1476.  CrossRef Google Scholar
First citationMaira, S. M., Galetic, I., Brazil, D. P., Decech, S., Ingley, E., thelen, M. & Hemmings, B. A. (2001). Science, 294, 374–380.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMccann, M., Casey, M. T., Devereux, M., Curran, M. & Cardin, C. (1996). Polyhedron, 15, 2117–2120.  CSD CrossRef CAS Web of Science Google Scholar
First citationMin, D. & Lee, S. M. (2002). Inorg. Chem. Commun. 5, 978–983.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWai, H. Y., Ru, J. W. & Mark, T. C. W. (1990). J. Crystallogr. Spectrosc. Res. 20, 307–312.  Google Scholar
First citationYaghi, O. M., Li, H. & Groy, T. L. (1996). J. Am. Chem. Soc. 118, 9096–9101.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m315-m316
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds