organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­chloro­anilinium chloride monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 4 February 2009; accepted 6 February 2009; online 13 February 2009)

The title compound, C6H6Cl2N+·Cl·H2O, is composed of discrete cations, choride anions and water mol­ecules, which are connected through N—H⋯Cl, O—H⋯Cl and N—H⋯O hydrogen bonding. Two H atoms of the positively charged –NH3+ group have two chloride acceptors and the other one has the O atom of the water mol­ecule as acceptor. The chloride anions form hydrogen bonds with two H atoms from two different water mol­ecules and two H atoms from two positively charged –NH3+ groups.

Related literature

For water-free 2,5-dichloro­anilinium chloride see: Gray & Jones (2002[Gray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 73-82.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6Cl2N+·Cl·H2O

  • Mr = 216.48

  • Monoclinic, P 21 /n

  • a = 7.679 (1) Å

  • b = 6.476 (1) Å

  • c = 19.060 (5) Å

  • β = 96.95 (3)°

  • V = 940.9 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 8.39 mm−1

  • T = 299 (2) K

  • 0.35 × 0.30 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.109, Tmax = 0.432

  • 3331 measured reflections

  • 1669 independent reflections

  • 1421 reflections with I > 2σ(I)

  • Rint = 0.068

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.143

  • S = 1.10

  • 1669 reflections

  • 125 parameters

  • 3 restraints

  • Only H-atom coordinates refined

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯Cl3i 0.92 (4) 2.24 (4) 3.123 (3) 162 (3)
N1—H12⋯Cl3 0.94 (4) 2.16 (4) 3.099 (3) 172 (3)
N1—H13⋯O1ii 0.88 (4) 1.82 (4) 2.699 (4) 175 (4)
O1—H1A⋯Cl3 0.85 (3) 2.37 (3) 3.212 (3) 172 (4)
O1—H1B⋯Cl3iii 0.83 (3) 2.34 (3) 3.158 (3) 169 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of water free 2,5-dichloroanilinium chloride has been reported (Gray & Jones, 2002). We report herein the crystal structure of 2,5-dichloroanilinium chloride monohydrate. The title compound showed interesting H-bonding in its crystal structure (Fig. 1). Two H-atoms of the positively charged NH3 group have two chloride acceptors and the other H has O atom acceptor of the water molecule, while chloride anions are linked by four-center hydrogen bonds, with each chloride forming H-bonding with two H-atoms, one each from two different water molecules and two H-atoms, one each from two positively charged NH3 groups. This is in comparison with the usual set of hydrogen bonds from NH3 to chloride leading to layer structure observed with water free 2,5-dichloroanilinium chloride (Gray & Jones, 2002), with a short Cl1..Cl3 contact. Further, the water free structure involved four weak interactions, namely the three hydrogen bonds H4···Cl3, H6···Cl2 and H3···Cl1 and the chlorine-chlorine interaction Cl2···Cl3. The crystal packing of (I) through N—H···Cl, O—H···Cl and N—H···O hydrogen bonding (Table 1) is shown in Fig.2

Related literature top

For water-free 2,5-dichloroanilinium chloride see: Gray & Jones (2002).

Experimental top

The solution of pure 2,5-dichloroaniline (0.02 mole) in ethanol (20 cc) was treated dropwise with dilute hydrochloric acid (>0.025 mole) with constant stirring. The resulting mixture was slowly evaporated at room temperature to obtain 2,5-dichloroanilinium hydrochloride monohydrate. The resultant solid was recrystallized to constant melting point from ethanol. The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

H atoms were located in a difference map, and their positional parameters were refined freely except for the water H atoms which were refined with the O—H distances restrained to 0.85 (4) Å and H—H distance restrained to 1.37 (4)Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2,5-Dichloroanilinium chloride monohydrate top
Crystal data top
C6H6Cl2N+·Cl·H2OF(000) = 440
Mr = 216.48Dx = 1.528 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.679 (1) Åθ = 6.0–20.3°
b = 6.476 (1) ŵ = 8.39 mm1
c = 19.060 (5) ÅT = 299 K
β = 96.95 (3)°Plate, colourless
V = 940.9 (3) Å30.35 × 0.30 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1421 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 67.2°, θmin = 4.7°
ω/2θ scansh = 99
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.109, Tmax = 0.432l = 2222
3331 measured reflections3 standard reflections every 120 min
1669 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Only H-atom coordinates refined
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.169P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.012
1669 reflectionsΔρmax = 0.39 e Å3
125 parametersΔρmin = 0.49 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0126 (16)
Crystal data top
C6H6Cl2N+·Cl·H2OV = 940.9 (3) Å3
Mr = 216.48Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.679 (1) ŵ = 8.39 mm1
b = 6.476 (1) ÅT = 299 K
c = 19.060 (5) Å0.35 × 0.30 × 0.10 mm
β = 96.95 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1421 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.068
Tmin = 0.109, Tmax = 0.4323 standard reflections every 120 min
3331 measured reflections intensity decay: 1.0%
1669 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.143Only H-atom coordinates refined
S = 1.10Δρmax = 0.39 e Å3
1669 reflectionsΔρmin = 0.49 e Å3
125 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64647 (11)0.35617 (13)0.11963 (6)0.0720 (4)
Cl20.84843 (12)0.33419 (16)0.08256 (4)0.0716 (4)
N10.8342 (3)0.0359 (4)0.16645 (11)0.0476 (6)
H110.872 (4)0.079 (6)0.1920 (19)0.057*
H120.736 (5)0.083 (5)0.1868 (18)0.057*
H130.917 (5)0.128 (6)0.179 (2)0.057*
C10.7922 (3)0.0096 (5)0.09016 (13)0.0441 (6)
C20.7056 (4)0.1657 (5)0.06338 (18)0.0529 (7)
C30.6664 (4)0.1873 (6)0.0093 (2)0.0635 (9)
H30.604 (5)0.303 (7)0.024 (2)0.076*
C40.7107 (4)0.0333 (6)0.05366 (16)0.0626 (9)
H40.681 (5)0.046 (6)0.100 (2)0.075*
C50.7943 (4)0.1398 (5)0.02646 (15)0.0534 (7)
C60.8371 (4)0.1651 (5)0.04598 (15)0.0474 (6)
H60.905 (4)0.288 (5)0.065 (2)0.057*
O10.0902 (3)0.3197 (4)0.19565 (15)0.0697 (7)
H1A0.200 (4)0.301 (6)0.206 (3)0.084*
H1B0.067 (5)0.413 (6)0.223 (2)0.084*
Cl30.50259 (9)0.21839 (12)0.22100 (4)0.0565 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0655 (6)0.0603 (5)0.0883 (6)0.0101 (3)0.0009 (5)0.0022 (4)
Cl20.0671 (6)0.0981 (7)0.0499 (4)0.0101 (4)0.0085 (4)0.0145 (4)
N10.0485 (13)0.0551 (13)0.0379 (10)0.0017 (11)0.0002 (9)0.0007 (10)
C10.0377 (13)0.0528 (14)0.0402 (11)0.0065 (11)0.0015 (10)0.0062 (11)
C20.0400 (13)0.0555 (16)0.0615 (17)0.0031 (12)0.0004 (13)0.0084 (13)
C30.0500 (17)0.0694 (19)0.0677 (19)0.0019 (15)0.0065 (15)0.0270 (17)
C40.0522 (16)0.086 (2)0.0470 (14)0.0111 (16)0.0034 (13)0.0205 (15)
C50.0436 (14)0.076 (2)0.0405 (13)0.0130 (13)0.0032 (12)0.0027 (13)
C60.0415 (13)0.0578 (15)0.0419 (13)0.0044 (12)0.0009 (11)0.0054 (12)
O10.0571 (14)0.0722 (16)0.0776 (15)0.0017 (11)0.0004 (12)0.0175 (12)
Cl30.0529 (5)0.0671 (5)0.0484 (4)0.0018 (3)0.0015 (3)0.0101 (3)
Geometric parameters (Å, º) top
Cl1—C21.731 (3)C3—C41.377 (6)
Cl2—C51.735 (3)C3—H30.92 (4)
N1—C11.461 (3)C4—C51.362 (5)
N1—H110.92 (4)C4—H40.88 (4)
N1—H120.94 (4)C5—C61.390 (4)
N1—H130.88 (4)C6—H61.00 (4)
C1—C21.382 (4)O1—H1A0.85 (3)
C1—C61.383 (4)O1—H1B0.83 (3)
C2—C31.388 (5)
C1—N1—H11117 (2)C4—C3—H3124 (3)
C1—N1—H12111 (2)C2—C3—H3116 (3)
H11—N1—H12105 (3)C5—C4—C3120.1 (3)
C1—N1—H13114 (2)C5—C4—H4121 (3)
H11—N1—H13104 (3)C3—C4—H4119 (3)
H12—N1—H13105 (3)C4—C5—C6121.3 (3)
C2—C1—C6121.2 (3)C4—C5—Cl2120.0 (2)
C2—C1—N1120.1 (3)C6—C5—Cl2118.8 (3)
C6—C1—N1118.7 (3)C1—C6—C5118.2 (3)
C1—C2—C3119.2 (3)C1—C6—H6121 (2)
C1—C2—Cl1120.5 (2)C5—C6—H6121 (2)
C3—C2—Cl1120.3 (3)H1A—O1—H1B104 (4)
C4—C3—C2120.0 (3)
C6—C1—C2—C31.3 (4)C3—C4—C5—C60.2 (5)
N1—C1—C2—C3179.8 (3)C3—C4—C5—Cl2179.5 (3)
C6—C1—C2—Cl1178.6 (2)C2—C1—C6—C50.6 (4)
N1—C1—C2—Cl10.2 (4)N1—C1—C6—C5179.1 (3)
C1—C2—C3—C41.3 (5)C4—C5—C6—C10.2 (4)
Cl1—C2—C3—C4178.7 (3)Cl2—C5—C6—C1179.6 (2)
C2—C3—C4—C50.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl3i0.92 (4)2.24 (4)3.123 (3)162 (3)
N1—H12···Cl30.94 (4)2.16 (4)3.099 (3)172 (3)
N1—H13···O1ii0.88 (4)1.82 (4)2.699 (4)175 (4)
O1—H1A···Cl30.85 (3)2.37 (3)3.212 (3)172 (4)
O1—H1B···Cl3iii0.83 (3)2.34 (3)3.158 (3)169 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6Cl2N+·Cl·H2O
Mr216.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)7.679 (1), 6.476 (1), 19.060 (5)
β (°) 96.95 (3)
V3)940.9 (3)
Z4
Radiation typeCu Kα
µ (mm1)8.39
Crystal size (mm)0.35 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.109, 0.432
No. of measured, independent and
observed [I > 2σ(I)] reflections
3331, 1669, 1421
Rint0.068
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.143, 1.10
No. of reflections1669
No. of parameters125
No. of restraints3
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.39, 0.49

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl3i0.92 (4)2.24 (4)3.123 (3)162 (3)
N1—H12···Cl30.94 (4)2.16 (4)3.099 (3)172 (3)
N1—H13···O1ii0.88 (4)1.82 (4)2.699 (4)175 (4)
O1—H1A···Cl30.85 (3)2.37 (3)3.212 (3)172 (4)
O1—H1B···Cl3iii0.83 (3)2.34 (3)3.158 (3)169 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 73–82.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds