organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[N-(2-Formyl­phen­yl)benzene­sulfonamido]acetate

aPG and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, bDepartment of Physics, P. T. Lee Chengalvaraya Naicker College of Engineering and Technology, Kancheepuram 631 502, India, cPG and Research Department of Physics, RKM Vivekananda College, Chennai 600 004, India, and dDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 20 January 2009; accepted 6 February 2009; online 18 February 2009)

In the title compound, C17H17NO5S, the N atom is sp3-hybridized and the S atom has a distorted tetra­hedral configuration. The dihedral angle between the two aromatic rings is 30.0 (1)°, and that between the ethyl acetate group and the formyl­phenyl ring is 77.4 (1)°. The mol­ecules are linked into chains along [100] by C—H⋯O hydrogen bonds and the chains are linked via C—H⋯π inter­actions.

Related literature

For the biological properties of sulfonamide derivatives, see: Brown (1971[Brown, G. M. (1971). Adv. Biochem. 35, 35-40.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Pomarnacka & Kozlarska-Kedra (2003[Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423-429.]). For related structures, see: Cameron et al. (1975[Cameron, T. S., Prout, K., Denton, B., Spagna, R. & White, E. (1975). J. Chem. Soc. Perkin. 2, pp. 176-185.]); Cotton & Stokley (1970[Cotton, F. A. & Stokley, P. F. (1970). J. Chem. Soc. 92, 294-302.]); Usha et al. (2005[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jaisankar, P. & Srinivasan, P. C. (2005). Acta Cryst. E61, o1916-o1918.]); Zhu et al. (2008[Zhu, H.-Y., Wu, Z. & Jiang, S. (2008). Acta Cryst. E64, o596.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO5S

  • Mr = 347.38

  • Orthorhombic, P 21 21 21

  • a = 11.3442 (5) Å

  • b = 11.7731 (6) Å

  • c = 12.7809 (6) Å

  • V = 1706.97 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.948, Tmax = 0.958

  • 10886 measured reflections

  • 4104 independent reflections

  • 3294 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 0.95

  • 4104 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1714 Friedel pairs

  • Flack parameter: −0.05 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.93 2.57 3.218 (3) 127
C16—H16BCg1ii 0.97 2.73 3.605 (3) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of C1–C6 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonamide derivates are well known drugs and are used to control diseases caused by bacterial infections. The antibacterial action of this group of drugs is exerted by the complete inhibition of dihydropteroate synthase enzyme towards the p-amino benzonate (Brown, 1971). Benzene sulfonamide derivatives are known to exhibit anticancer and HIV activities (Pomarnacka & Kozlarska-Kedra, 2003) and antibacterial activities (Nieto et al., 2005). In view of this medicinal importance, the crystal structure determination of the title compound (Fig.1) was carried out and the results are presented here.

The angles around atom S1 deviate significantly from the regular tetrahedral value, with the largest deviation of 120.6 (1)° for O1—S1—O2 angle. This may be due to non-bonding interactions between SO bonds (Cotton & Stokley, 1970). The sulfonyl oxygen O1 is syn-clinal and O2 is syn-periplanar to the phenyl ring. The dihedral angle between the best planes through the ethylacetate group (O3/O4/C14/C15/C16) and formyl phenyl ring (C7-C12) is 77.4 (1)°. The aldyhyde group is slightly twisted from the plane of the ring to which it is attached as evidenced by the torsion angle C11—C12—C13—O5 of -8.5 (3)°. The relative orientations of C/N/S and O/S/O planes is determined by the hybridization nature of atom N1. The angles between planes C14/N1/S1 and O1/S1/O2 and between C7/N1/S1 and O1/S1/O2 planes are 59° and 56°, respectively. These values are close to 58° reported for sp3 N atoms [87° for sp2 N atoms] (Cameron et al., 1975). The geometrical parameters agree well with those reported for related sulfonamide structures (Usha et al., 2005; Zhu et al., 2008).

In addition to van der Waals interactions, the crystal structure is stabilized by C—H···O and C—H···π interactions (Table 1).

Related literature top

For the biological properties of sulfonamide derivatives, see: Brown (1971); Nieto et al. (2005); Pomarnacka & Kozlarska-Kedra (2003). For related structures, see: Cameron et al. (1975); Cotton & Stokley (1970); Usha et al. (2005); Zhu et al. (2008).

Experimental top

N-(2-Formylphenyl)benzene sulfonamide (1.7 g, 6.5 mmol) was dissolved in dimethyl acetamide (25 ml). To this potassium carbonate (2.25 g, 16.2 mmol) and ethyl bromoacetate (0.86 ml, 7.8 mmol) were added. The reaction mixture was stirred at room temperature for 4 h. It was then poured over curshed ice (100 g) cotaining 5 ml of concentrated HCl. The precipitated solid was filtered off and the title compound was recrystallized from methanol. Yield = 1 g (45%) and m.p = 381 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93-0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
Ethyl 2-[N-(2-Formylphenyl)benzenesulfonamido]acetate top
Crystal data top
C17H17NO5SF(000) = 728
Mr = 347.38Dx = 1.352 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4197 reflections
a = 11.3442 (5) Åθ = 2.4–28.2°
b = 11.7731 (6) ŵ = 0.22 mm1
c = 12.7809 (6) ÅT = 293 K
V = 1706.97 (14) Å3Block, colourless
Z = 40.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4104 independent reflections
Radiation source: fine-focus sealed tube3294 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 28.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1510
Tmin = 0.948, Tmax = 0.958k = 1315
10886 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2327P]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
4104 reflectionsΔρmax = 0.31 e Å3
218 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 1714 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (7)
Crystal data top
C17H17NO5SV = 1706.97 (14) Å3
Mr = 347.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.3442 (5) ŵ = 0.22 mm1
b = 11.7731 (6) ÅT = 293 K
c = 12.7809 (6) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4104 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3294 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.958Rint = 0.022
10886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.31 e Å3
S = 0.95Δρmin = 0.23 e Å3
4104 reflectionsAbsolute structure: Flack (1983), 1714 Friedel pairs
218 parametersAbsolute structure parameter: 0.05 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53613 (4)0.77486 (4)0.23609 (3)0.04875 (13)
N10.57693 (13)0.74419 (13)0.35602 (12)0.0458 (4)
O10.58109 (13)0.88549 (13)0.21568 (11)0.0627 (4)
O20.56980 (14)0.68125 (16)0.17264 (13)0.0734 (5)
O30.75001 (14)0.59352 (14)0.41673 (16)0.0749 (5)
O40.61531 (12)0.47431 (12)0.48118 (11)0.0576 (4)
O50.89664 (14)0.90059 (16)0.34906 (17)0.0833 (6)
C10.38089 (15)0.77875 (16)0.23788 (14)0.0433 (4)
C20.3190 (2)0.68510 (18)0.20483 (17)0.0559 (5)
H20.35850.62150.17980.067*
C30.1975 (2)0.6866 (2)0.2093 (2)0.0693 (6)
H30.15460.62370.18700.083*
C40.1400 (2)0.7802 (2)0.24649 (19)0.0705 (6)
H40.05810.78060.24960.085*
C50.2021 (2)0.8738 (2)0.27923 (18)0.0660 (6)
H5A0.16220.93710.30460.079*
C60.32367 (19)0.87418 (18)0.27450 (16)0.0547 (5)
H60.36630.93760.29560.066*
C70.60070 (16)0.83376 (15)0.42938 (14)0.0430 (4)
C80.51433 (19)0.86705 (19)0.49933 (16)0.0585 (5)
H80.44000.83380.49670.070*
C90.5382 (3)0.9487 (2)0.57219 (17)0.0717 (6)
H90.47990.97080.61920.086*
C100.6472 (3)0.9983 (2)0.57653 (17)0.0713 (7)
H100.66301.05290.62730.086*
C110.7342 (2)0.96779 (17)0.50592 (16)0.0585 (5)
H110.80751.00300.50820.070*
C120.71158 (17)0.88403 (15)0.43139 (14)0.0444 (4)
C130.80492 (18)0.85128 (18)0.35747 (16)0.0525 (5)
H130.79190.78860.31480.063*
C140.54423 (19)0.63341 (16)0.39786 (16)0.0529 (4)
H14A0.50220.59080.34470.064*
H14B0.49170.64370.45700.064*
C150.65033 (19)0.56723 (17)0.43213 (15)0.0485 (4)
C160.7055 (2)0.39708 (18)0.51686 (18)0.0642 (6)
H16A0.76310.43720.55910.077*
H16B0.74570.36300.45770.077*
C170.6461 (3)0.3085 (2)0.5799 (3)0.1089 (12)
H17A0.61110.34260.64060.163*
H17B0.70270.25250.60120.163*
H17C0.58580.27290.53860.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0432 (2)0.0579 (3)0.0451 (2)0.0008 (2)0.0015 (2)0.0029 (2)
N10.0426 (8)0.0414 (8)0.0535 (8)0.0000 (7)0.0064 (6)0.0046 (7)
O10.0607 (9)0.0714 (10)0.0559 (8)0.0149 (8)0.0027 (7)0.0166 (7)
O20.0594 (10)0.0918 (12)0.0692 (9)0.0096 (9)0.0088 (7)0.0290 (9)
O30.0449 (9)0.0622 (10)0.1175 (14)0.0016 (8)0.0120 (9)0.0194 (9)
O40.0636 (9)0.0468 (8)0.0622 (8)0.0010 (7)0.0076 (7)0.0095 (7)
O50.0478 (9)0.0929 (13)0.1093 (14)0.0136 (9)0.0124 (9)0.0077 (11)
C10.0411 (9)0.0509 (10)0.0380 (8)0.0016 (8)0.0043 (7)0.0017 (9)
C20.0555 (13)0.0491 (11)0.0630 (12)0.0033 (10)0.0050 (9)0.0037 (9)
C30.0548 (13)0.0680 (14)0.0852 (16)0.0116 (12)0.0057 (12)0.0013 (12)
C40.0466 (11)0.0937 (18)0.0712 (14)0.0004 (13)0.0025 (10)0.0003 (14)
C50.0592 (13)0.0776 (15)0.0612 (13)0.0218 (13)0.0023 (11)0.0129 (12)
C60.0576 (12)0.0564 (12)0.0502 (10)0.0069 (10)0.0082 (9)0.0095 (9)
C70.0454 (10)0.0408 (9)0.0429 (9)0.0049 (8)0.0035 (8)0.0058 (8)
C80.0522 (12)0.0656 (13)0.0576 (11)0.0071 (10)0.0076 (9)0.0062 (10)
C90.0859 (17)0.0712 (14)0.0579 (12)0.0135 (15)0.0170 (14)0.0028 (11)
C100.111 (2)0.0521 (12)0.0508 (12)0.0063 (13)0.0067 (13)0.0087 (10)
C110.0719 (15)0.0488 (11)0.0547 (12)0.0025 (11)0.0150 (10)0.0027 (9)
C120.0463 (10)0.0420 (9)0.0449 (9)0.0045 (8)0.0050 (8)0.0067 (8)
C130.0432 (11)0.0538 (11)0.0605 (12)0.0035 (10)0.0014 (9)0.0079 (9)
C140.0452 (11)0.0452 (10)0.0684 (11)0.0022 (10)0.0031 (10)0.0073 (9)
C150.0523 (12)0.0427 (10)0.0505 (10)0.0004 (9)0.0091 (9)0.0037 (8)
C160.0804 (16)0.0486 (11)0.0635 (13)0.0096 (11)0.0243 (11)0.0018 (10)
C170.132 (3)0.0725 (18)0.122 (3)0.0193 (18)0.047 (2)0.0430 (18)
Geometric parameters (Å, º) top
S1—O11.4229 (15)C7—C81.383 (3)
S1—O21.4206 (16)C7—C121.390 (3)
S1—N11.6414 (15)C8—C91.365 (3)
S1—C11.7618 (18)C8—H80.93
N1—C71.437 (2)C9—C101.370 (4)
N1—C141.458 (2)C9—H90.93
O3—C151.189 (2)C10—C111.385 (3)
O4—C151.322 (2)C10—H100.93
O4—C161.443 (2)C11—C121.395 (3)
O5—C131.196 (3)C11—H110.93
C1—C61.379 (3)C12—C131.471 (3)
C1—C21.374 (3)C13—H130.93
C2—C31.380 (3)C14—C151.499 (3)
C2—H20.93C14—H14A0.97
C3—C41.367 (3)C14—H14B0.97
C3—H30.93C16—C171.480 (4)
C4—C51.373 (3)C16—H16A0.97
C4—H40.93C16—H16B0.97
C5—C61.381 (3)C17—H17A0.96
C5—H5A0.93C17—H17B0.96
C6—H60.93C17—H17C0.96
O1—S1—O2120.6 (1)C8—C9—H9119.8
O1—S1—N1105.7 (1)C10—C9—H9119.8
O2—S1—N1106.7 (1)C9—C10—C11120.4 (2)
O1—S1—C1109.7 (1)C9—C10—H10119.8
O2—S1—C1107.2 (1)C11—C10—H10119.8
N1—S1—C1106.0 (1)C10—C11—C12119.8 (2)
C7—N1—C14117.7 (2)C10—C11—H11120.1
C7—N1—S1120.1 (1)C12—C11—H11120.1
C14—N1—S1117.9 (1)C7—C12—C11118.69 (19)
C15—O4—C16117.27 (16)C7—C12—C13121.86 (18)
C6—C1—C2121.17 (18)C11—C12—C13119.45 (19)
C6—C1—S1119.73 (15)O5—C13—C12123.8 (2)
C2—C1—S1119.08 (15)O5—C13—H13118.1
C3—C2—C1119.2 (2)C12—C13—H13118.1
C3—C2—H2120.4N1—C14—C15111.6 (2)
C1—C2—H2120.4N1—C14—H14A109.3
C2—C3—C4120.1 (2)C15—C14—H14A109.3
C2—C3—H3120.0N1—C14—H14B109.3
C4—C3—H3120.0C15—C14—H14B109.3
C5—C4—C3120.6 (2)H14A—C14—H14B108.0
C5—C4—H4119.7O3—C15—O4125.4 (2)
C3—C4—H4119.7O3—C15—C14125.5 (2)
C4—C5—C6120.1 (2)O4—C15—C14109.11 (17)
C4—C5—H5A120.0O4—C16—C17107.0 (2)
C6—C5—H5A120.0O4—C16—H16A110.3
C1—C6—C5118.9 (2)C17—C16—H16A110.3
C1—C6—H6120.6O4—C16—H16B110.3
C5—C6—H6120.6C17—C16—H16B110.3
C8—C7—C12120.55 (19)H16A—C16—H16B108.6
C8—C7—N1119.79 (18)C16—C17—H17A109.5
C12—C7—N1119.63 (17)C16—C17—H17B109.5
C9—C8—C7120.0 (2)H17A—C17—H17B109.5
C9—C8—H8120.0C16—C17—H17C109.5
C7—C8—H8120.0H17A—C17—H17C109.5
C8—C9—C10120.5 (2)H17B—C17—H17C109.5
O1—S1—N1—C724.90 (17)C14—N1—C7—C12119.11 (18)
O2—S1—N1—C7154.43 (15)S1—N1—C7—C1284.75 (19)
C1—S1—N1—C791.53 (15)C12—C7—C8—C91.0 (3)
O1—S1—N1—C14179.00 (14)N1—C7—C8—C9177.16 (19)
O2—S1—N1—C1449.47 (17)C7—C8—C9—C100.1 (3)
C1—S1—N1—C1464.58 (16)C8—C9—C10—C111.1 (4)
O1—S1—C1—C633.51 (18)C9—C10—C11—C121.5 (3)
O2—S1—C1—C6166.12 (17)C8—C7—C12—C110.6 (3)
N1—S1—C1—C680.23 (17)N1—C7—C12—C11177.55 (16)
O1—S1—C1—C2148.00 (16)C8—C7—C12—C13179.43 (17)
O2—S1—C1—C215.4 (2)N1—C7—C12—C132.4 (3)
N1—S1—C1—C298.26 (16)C10—C11—C12—C70.6 (3)
C6—C1—C2—C30.5 (3)C10—C11—C12—C13179.32 (19)
S1—C1—C2—C3177.94 (18)C7—C12—C13—O5171.5 (2)
C1—C2—C3—C40.2 (3)C11—C12—C13—O58.5 (3)
C2—C3—C4—C50.3 (4)C7—N1—C14—C1580.8 (2)
C3—C4—C5—C60.2 (4)S1—N1—C14—C15122.49 (16)
C2—C1—C6—C51.1 (3)C16—O4—C15—O31.5 (3)
S1—C1—C6—C5177.41 (17)C16—O4—C15—C14177.78 (17)
C4—C5—C6—C10.9 (3)N1—C14—C15—O38.5 (3)
C14—N1—C7—C859.1 (2)N1—C14—C15—O4172.19 (15)
S1—N1—C7—C897.09 (19)C15—O4—C16—C17173.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.932.573.218 (3)127
C16—H16B···Cg1ii0.972.733.605 (3)150
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H17NO5S
Mr347.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.3442 (5), 11.7731 (6), 12.7809 (6)
V3)1706.97 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.948, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
10886, 4104, 3294
Rint0.022
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 0.95
No. of reflections4104
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23
Absolute structureFlack (1983), 1714 Friedel pairs
Absolute structure parameter0.05 (7)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.932.573.218 (3)127
C16—H16B···Cg1ii0.972.733.605 (3)150
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

BB and RS thank Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationBrown, G. M. (1971). Adv. Biochem. 35, 35–40.  CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCameron, T. S., Prout, K., Denton, B., Spagna, R. & White, E. (1975). J. Chem. Soc. Perkin. 2, pp. 176–185.  CrossRef Google Scholar
First citationCotton, F. A. & Stokley, P. F. (1970). J. Chem. Soc. 92, 294–302.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423–429.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jaisankar, P. & Srinivasan, P. C. (2005). Acta Cryst. E61, o1916–o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H.-Y., Wu, Z. & Jiang, S. (2008). Acta Cryst. E64, o596.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds