organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[1-(2-Hy­droxy­phen­yl)ethyl­­idene]-2-nitro­benzohydrazide methanol solvate

aSchool of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, Hunan 410004, People's Republic of China
*Correspondence e-mail: gejiangxiaowc@163.com

(Received 10 February 2009; accepted 12 February 2009; online 25 February 2009)

In the title compound, C15H13N3O4·CH3OH, the dihedral angle between the two substituted benzene rings is 66.7 (2)°. An intra­molecular O—H⋯N hydrogen bond is observed in the Schiff base mol­ecule. In the crystal structure, the Schiff base and solvent mol­ecules are linked into chains running along the a axis by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the biological properties of hydrazone compounds, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]). For complexes of hydrazone compounds, see: Iskander et al. (2001[Iskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787-2798.]); Aggarwal et al. (1981[Aggarwal, R. C., Singh, N. K. & Singh, R. P. (1981). Inorg. Chem. 20, 2794-2798.]); Aruffo et al. (1982[Aruffo, A. A., Murphy, T. B., Johnson, D. K., Rose, N. J. & Schomaker, V. (1982). Inorg. Chim. Acta, 67, L25-L27.]). For related structures, see: Fun et al. (2008a[Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o2377.],b[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008b). Acta Cryst. E64, o1907-o1908.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.]); Zhi & Yang (2007[Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.]); Mohd Lair et al. (2009a[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.],b[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190.]); Yehye et al. (2008[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o960.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4·CH4O

  • Mr = 331.33

  • Triclinic, [P \overline 1]

  • a = 7.124 (2) Å

  • b = 8.066 (2) Å

  • c = 15.764 (3) Å

  • α = 101.950 (2)°

  • β = 92.972 (2)°

  • γ = 114.889 (2)°

  • V = 794.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.23 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.977

  • 4659 measured reflections

  • 3371 independent reflections

  • 2660 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.05

  • 3371 reflections

  • 226 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.893 (9) 2.08 (1) 2.9563 (17) 165 (2)
O5—H5⋯O1 0.82 1.94 2.7451 (16) 168
O4—H4⋯N2 0.82 1.85 2.5612 (17) 144
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have been demonstrated to possess biological properties, such as antimicrobial, antitubercular, anticancer and antitumor (Bedia et al., 2006). Moreover, these compounds are good ligands in the coordination chemistry (Iskander et al., 2001; Aggarwal et al., 1981; Aruffo et al., 1982). Recently, a large number of hydrazone compounds have been reported (Fun et al., 2008b; Butcher et al., 2007; Zhi & Yang, 2007). In this paper, a new hydrazone compound (Fig. 1), derived from 1-(2-hydroxyphenyl)ethanone and 2-nitrobenzohydrazide is reported.

The asymmetric unit of the title compound contains a Schiff base molecule and a methanol molecule of crystallization. The dihedral angle between the two substituted benzene rings is 66.7 (2)°, indicating that the Schiff base molecule is twisted. The dihedral angle between the C1-C6 and O2/O3/N3/C2 planes is 26.0 (1)°. All bond lengths in the compound are typical (Allen et al., 1987) and comparable to those observed in similar hydrazone compounds (Fun et al., 2008a; Mohd Lair et al., 2009a,b; Yehye et al., 2008). An intramolecular O—H···N hydrogen bond is observed in the Schiff base molecule.

In the crystal structure, the Schiff base and methanol molecules are linked through O–H···O and N–H···O hydrogen bonds (Table 1), forming chains running along the a axis (Fig. 2).

Related literature top

For the biological properties of hydrazone compounds, see: Bedia et al. (2006). For complexes of hydrazone compounds, see: Iskander et al. (2001); Aggarwal et al. (1981); Aruffo et al. (1982). For related structures, see: Fun et al. (2008a,b); Butcher et al. (2007); Zhi & Yang (2007); Mohd Lair et al. (2009a,b); Yehye et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

1-(2-Hydroxyphenyl)ethanone (1.0 mmol, 136.2 mg) and 2-nitrobenzohydrazide (1.0 mmol, 197.2 mg) were stirred at room temperature for 3 h. The filtrate was kept in air for a few days to obtain colourless block-shaped crystals of the title compound.

Refinement top

Atom H1 attached to N1 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. C- and O-bound H atoms were positioned geometrically and refined using a riding model with d(C–H) = 0.93–0.96 Å, d(O–H) = 0.82 Å and Uiso = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Hydrogen-bonded (dashed lines) chains in the title compound, viewed along the b axis. H atoms not involved in the interactions have been omitted for clarity.
N'-[1-(2-Hydroxyphenyl)ethylidene]-2-nitrobenzohydrazide methanol solvate top
Crystal data top
C15H13N3O4·CH4OZ = 2
Mr = 331.33F(000) = 348
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.124 (2) ÅCell parameters from 1968 reflections
b = 8.066 (2) Åθ = 2.6–28.5°
c = 15.764 (3) ŵ = 0.11 mm1
α = 101.950 (2)°T = 298 K
β = 92.972 (2)°Block, colourless
γ = 114.889 (2)°0.23 × 0.23 × 0.22 mm
V = 794.0 (3) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3371 independent reflections
Radiation source: fine-focus sealed tube2660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.976, Tmax = 0.977k = 1010
4659 measured reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.1607P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3371 reflectionsΔρmax = 0.24 e Å3
226 parametersΔρmin = 0.23 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.066 (6)
Crystal data top
C15H13N3O4·CH4Oγ = 114.889 (2)°
Mr = 331.33V = 794.0 (3) Å3
Triclinic, P1Z = 2
a = 7.124 (2) ÅMo Kα radiation
b = 8.066 (2) ŵ = 0.11 mm1
c = 15.764 (3) ÅT = 298 K
α = 101.950 (2)°0.23 × 0.23 × 0.22 mm
β = 92.972 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3371 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2660 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.977Rint = 0.014
4659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
3371 reflectionsΔρmin = 0.23 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46363 (18)0.2874 (2)0.22886 (7)0.0558 (3)
O20.2215 (3)0.7197 (2)0.41556 (13)0.0902 (5)
O30.4022 (2)0.65556 (18)0.32038 (9)0.0639 (4)
O40.3900 (2)0.2749 (2)0.00437 (8)0.0597 (4)
H40.36250.27870.04570.089*
O50.81043 (17)0.27761 (18)0.30757 (8)0.0522 (3)
H50.71580.29680.28670.078*
N10.13992 (19)0.27191 (19)0.20210 (8)0.0396 (3)
N20.1602 (2)0.27247 (19)0.11548 (8)0.0403 (3)
N30.2967 (2)0.61957 (19)0.37848 (10)0.0495 (4)
C10.2777 (2)0.2991 (2)0.34961 (9)0.0336 (3)
C20.2633 (2)0.4482 (2)0.40702 (9)0.0363 (3)
C30.2296 (2)0.4472 (2)0.49259 (10)0.0441 (4)
H30.21630.54720.52880.053*
C40.2163 (2)0.2946 (2)0.52303 (10)0.0472 (4)
H4A0.19470.29170.58050.057*
C50.2348 (2)0.1460 (2)0.46837 (11)0.0450 (4)
H5A0.22860.04480.48960.054*
C60.2625 (2)0.1475 (2)0.38232 (10)0.0386 (3)
H60.27120.04530.34580.046*
C70.3056 (2)0.2892 (2)0.25478 (9)0.0375 (3)
C80.0013 (2)0.2459 (2)0.06163 (9)0.0383 (3)
C90.2106 (3)0.2077 (3)0.08602 (11)0.0564 (5)
H9A0.23630.13730.12980.085*
H9B0.31550.13610.03500.085*
H9C0.21600.32530.10890.085*
C100.0411 (3)0.2564 (2)0.02863 (9)0.0412 (4)
C110.2322 (3)0.2729 (2)0.05640 (10)0.0468 (4)
C120.2639 (4)0.2882 (3)0.14152 (12)0.0639 (5)
H120.39050.30060.15950.077*
C130.1107 (4)0.2853 (3)0.19919 (12)0.0712 (6)
H130.13410.29530.25580.085*
C140.0770 (4)0.2676 (3)0.17371 (12)0.0678 (6)
H140.18080.26480.21310.081*
C150.1110 (3)0.2540 (3)0.08957 (11)0.0543 (4)
H150.23820.24290.07280.065*
C160.7246 (3)0.1002 (3)0.32738 (15)0.0637 (5)
H16A0.83220.05980.33400.096*
H16B0.61540.00970.28060.096*
H16C0.66750.11030.38100.096*
H10.030 (2)0.277 (3)0.2252 (11)0.052 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0432 (7)0.0981 (10)0.0467 (6)0.0446 (7)0.0145 (5)0.0297 (6)
O20.1112 (14)0.0669 (9)0.1256 (14)0.0645 (10)0.0392 (11)0.0317 (9)
O30.0749 (9)0.0548 (7)0.0645 (8)0.0235 (7)0.0108 (7)0.0313 (6)
O40.0544 (8)0.0912 (9)0.0469 (7)0.0439 (7)0.0126 (6)0.0183 (7)
O50.0372 (6)0.0664 (7)0.0588 (7)0.0265 (6)0.0036 (5)0.0209 (6)
N10.0333 (7)0.0574 (8)0.0337 (6)0.0243 (6)0.0058 (5)0.0135 (6)
N20.0391 (7)0.0543 (7)0.0329 (6)0.0252 (6)0.0042 (5)0.0123 (5)
N30.0477 (8)0.0415 (7)0.0602 (9)0.0216 (6)0.0014 (7)0.0133 (6)
C10.0243 (6)0.0407 (7)0.0365 (7)0.0144 (6)0.0020 (5)0.0115 (6)
C20.0294 (7)0.0382 (7)0.0420 (8)0.0157 (6)0.0004 (6)0.0111 (6)
C30.0368 (8)0.0516 (9)0.0412 (8)0.0209 (7)0.0040 (6)0.0038 (7)
C40.0399 (8)0.0664 (10)0.0351 (8)0.0206 (8)0.0087 (6)0.0184 (7)
C50.0402 (8)0.0495 (9)0.0501 (9)0.0180 (7)0.0088 (7)0.0258 (7)
C60.0345 (8)0.0390 (7)0.0443 (8)0.0174 (6)0.0056 (6)0.0120 (6)
C70.0315 (7)0.0471 (8)0.0391 (8)0.0204 (6)0.0062 (6)0.0146 (6)
C80.0388 (8)0.0385 (7)0.0379 (8)0.0202 (6)0.0001 (6)0.0050 (6)
C90.0400 (9)0.0804 (12)0.0470 (9)0.0277 (9)0.0005 (7)0.0123 (9)
C100.0492 (9)0.0390 (7)0.0340 (7)0.0215 (7)0.0019 (6)0.0039 (6)
C110.0557 (10)0.0477 (9)0.0377 (8)0.0264 (8)0.0039 (7)0.0053 (7)
C120.0784 (14)0.0734 (13)0.0419 (9)0.0364 (11)0.0161 (9)0.0110 (9)
C130.1033 (18)0.0730 (13)0.0326 (9)0.0357 (12)0.0059 (10)0.0119 (9)
C140.0875 (15)0.0701 (12)0.0408 (10)0.0355 (11)0.0158 (9)0.0084 (9)
C150.0589 (11)0.0597 (10)0.0424 (9)0.0286 (9)0.0080 (7)0.0077 (8)
C160.0495 (11)0.0652 (12)0.0875 (14)0.0311 (9)0.0180 (10)0.0274 (10)
Geometric parameters (Å, º) top
O1—C71.2218 (18)C5—H5A0.93
O2—N31.2172 (19)C6—H60.93
O3—N31.2192 (19)C8—C101.478 (2)
O4—C111.349 (2)C8—C91.497 (2)
O4—H40.82C9—H9A0.96
O5—C161.410 (2)C9—H9B0.96
O5—H50.82C9—H9C0.96
N1—C71.3472 (18)C10—C151.401 (2)
N1—N21.3812 (17)C10—C111.412 (2)
N1—H10.893 (9)C11—C121.394 (2)
N2—C81.2916 (19)C12—C131.373 (3)
N3—C21.4705 (19)C12—H120.93
C1—C61.389 (2)C13—C141.374 (3)
C1—C21.392 (2)C13—H130.93
C1—C71.5083 (19)C14—C151.379 (3)
C2—C31.383 (2)C14—H140.93
C3—C41.380 (2)C15—H150.93
C3—H30.93C16—H16A0.96
C4—C51.384 (2)C16—H16B0.96
C4—H4A0.93C16—H16C0.96
C5—C61.383 (2)
C11—O4—H4109.5C10—C8—C9120.59 (13)
C16—O5—H5109.5C8—C9—H9A109.5
C7—N1—N2117.46 (12)C8—C9—H9B109.5
C7—N1—H1119.7 (12)H9A—C9—H9B109.5
N2—N1—H1122.2 (12)C8—C9—H9C109.5
C8—N2—N1119.43 (12)H9A—C9—H9C109.5
O2—N3—O3123.74 (15)H9B—C9—H9C109.5
O2—N3—C2118.16 (15)C15—C10—C11117.60 (15)
O3—N3—C2118.08 (14)C15—C10—C8120.27 (15)
C6—C1—C2117.14 (13)C11—C10—C8122.11 (14)
C6—C1—C7117.87 (13)O4—C11—C12116.92 (16)
C2—C1—C7124.98 (13)O4—C11—C10123.35 (14)
C3—C2—C1122.71 (14)C12—C11—C10119.73 (16)
C3—C2—N3117.65 (14)C13—C12—C11120.8 (2)
C1—C2—N3119.55 (13)C13—C12—H12119.6
C4—C3—C2118.57 (15)C11—C12—H12119.6
C4—C3—H3120.7C12—C13—C14120.37 (18)
C2—C3—H3120.7C12—C13—H13119.8
C3—C4—C5120.24 (14)C14—C13—H13119.8
C3—C4—H4A119.9C13—C14—C15119.77 (18)
C5—C4—H4A119.9C13—C14—H14120.1
C6—C5—C4120.21 (14)C15—C14—H14120.1
C6—C5—H5A119.9C14—C15—C10121.72 (19)
C4—C5—H5A119.9C14—C15—H15119.1
C5—C6—C1121.08 (14)C10—C15—H15119.1
C5—C6—H6119.5O5—C16—H16A109.5
C1—C6—H6119.5O5—C16—H16B109.5
O1—C7—N1123.95 (14)H16A—C16—H16B109.5
O1—C7—C1121.23 (13)O5—C16—H16C109.5
N1—C7—C1114.72 (12)H16A—C16—H16C109.5
N2—C8—C10115.28 (13)H16B—C16—H16C109.5
N2—C8—C9124.13 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.89 (1)2.08 (1)2.9563 (17)165 (2)
O5—H5···O10.821.942.7451 (16)168
O4—H4···N20.821.852.5612 (17)144
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O4·CH4O
Mr331.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.124 (2), 8.066 (2), 15.764 (3)
α, β, γ (°)101.950 (2), 92.972 (2), 114.889 (2)
V3)794.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.23 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.976, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
4659, 3371, 2660
Rint0.014
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.05
No. of reflections3371
No. of parameters226
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.893 (9)2.08 (1)2.9563 (17)165 (2)
O5—H5···O10.821.942.7451 (16)168
O4—H4···N20.821.852.5612 (17)144
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by Changsha University of Science and Technology (Project No. 1004091).

References

First citationAggarwal, R. C., Singh, N. K. & Singh, R. P. (1981). Inorg. Chem. 20, 2794–2798.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAruffo, A. A., Murphy, T. B., Johnson, D. K., Rose, N. J. & Schomaker, V. (1982). Inorg. Chim. Acta, 67, L25–L27.  CSD CrossRef CAS Web of Science Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o2377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008b). Acta Cryst. E64, o1907–o1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIskander, M. F., Khalil, T. E., Haase, W., Werner, R., Svoboda, I. & Fuess, H. (2001). Polyhedron, 20, 2787–2798.  Web of Science CSD CrossRef CAS Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds