organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[3-chloro-2-(chloro­meth­yl)prop­yl]benzene

aSchool of Chemistry and Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: xiaoqiang_sun@yahoo.com.cn

(Received 25 December 2008; accepted 7 January 2009; online 6 February 2009)

The title mol­ecule, C14H18Cl4, possesses a crystallographically imposed inversion centre, which coincides with the centre of benzene ring. In the absence of classical inter­molecular inter­actions, van der Waals forces help the mol­ecules to pack in the crystal.

Related literature

For related crystal structures, see: Chen et al. (2005[Chen, A.-H., Wang, Z.-G., Yin, G.-D. & Wu, A.-X. (2005). Acta Cryst. E61, o3240-o3241.]); Gao et al. (2009[Gao, Y., Xi, H., Sun, X., Fu, Y. & Liu, L. (2009). Acta Cryst. E65, o170.]). For general background, see Amabilino & Stoddart (1995[Amabilino, D. B. & Stoddart, J. F. (1995). Chem. Rev. 95, 2725-2737.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18Cl4

  • Mr = 328.08

  • Monoclinic, P 21 /c

  • a = 6.518 (3) Å

  • b = 14.680 (6) Å

  • c = 8.433 (4) Å

  • β = 106.335 (5)°

  • V = 774.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.807, Tmax = 0.842

  • 4423 measured reflections

  • 1679 independent reflections

  • 1275 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.09

  • 1679 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular recognition between a π-electron-rich hydroquinone ring and π-electron-deficient cyclophane has provided the inspiration for the self-assembly of a large number of catenanes (Amabilino & Stoddart, 1995). In our study of the applications of fused bipyridine cyclophane compounds in the self-assembly of supramolecular systems, we obtained tetraethyl 2,2'-(p-phenylenedimethylene)dimalonate (Chen et al., 2005), which was used in the synthesis of 2,2'-(p-phenylenedimethylene)bis(propane-1,3-diol) (Gao et al., 2009). The title compound, (I), was obtained by the chlorination of the diol. Herewith we present the crystal structure of (I) (Fig. 1).

Related literature top

For related crystal structures, see: Chen et al. (2005); Gao et al. (2009). For general background, see Amabilino & Stoddart (1995).

Experimental top

The 2,2'-(p-phenylenedimethylene)bis(propane-1,3-diol), used in this study, was obtained in accordance with the Gao et al. (2005). In a flame-dryed, round-bottomed flask was placed SOCl2(5 mL) and p-C6H4[CH2CH(CH2OH)2]2(0.508 g,2 mmol) was slowly added under stirring. The mixture was heated up to 333 K. The solvent was evaporated and the resulting oil was chromatographed on a silica-gel column, yielding the title compound (0.51 g, 77%). M.p. 353–354 K.

Refinement top

All H atoms were geometrically positioned (C–H 0.93-0.98%A) and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and 30% probability displacement ellipsoids [symmetry code: (A)-x, -y + 2, -z + 1].
1,4-Bis[3-chloro-2-(chloromethyl)propyl]benzene top
Crystal data top
C14H18Cl4F(000) = 340
Mr = 328.08Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1607 reflections
a = 6.518 (3) Åθ = 2.8–26.1°
b = 14.680 (6) ŵ = 0.75 mm1
c = 8.433 (4) ÅT = 291 K
β = 106.335 (5)°Block, colourless
V = 774.3 (6) Å30.30 × 0.26 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
1679 independent reflections
Radiation source: sealed tube1275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 87
Tmin = 0.807, Tmax = 0.842k = 1814
4423 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.0345P]
where P = (Fo2 + 2Fc2)/3
1679 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H18Cl4V = 774.3 (6) Å3
Mr = 328.08Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.518 (3) ŵ = 0.75 mm1
b = 14.680 (6) ÅT = 291 K
c = 8.433 (4) Å0.30 × 0.26 × 0.24 mm
β = 106.335 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1679 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1275 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.842Rint = 0.066
4423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
1679 reflectionsΔρmin = 0.32 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

The structures were solved with direct methods and refined with full-matrix least-squares techniques using the SHELXTL. The coordinates of the non-hydrogen atoms were refined anisotropically, and the positions of the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 timesUeq(C).

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1873 (3)0.97482 (12)0.6208 (2)0.0415 (4)
C20.0205 (4)1.01687 (13)0.6634 (2)0.0482 (5)
H20.03271.02840.77410.058*
C30.1637 (3)1.04196 (13)0.5447 (3)0.0477 (5)
H30.27331.07050.57640.057*
C40.3901 (3)0.94730 (13)0.7505 (3)0.0489 (5)
H7A0.39990.98120.85110.059*
H7B0.51230.96380.71220.059*
C50.4008 (3)0.84467 (13)0.7898 (2)0.0410 (4)
H80.39840.81230.68770.049*
C60.6155 (3)0.82501 (15)0.9136 (3)0.0543 (5)
H9A0.61740.85151.01940.065*
H9B0.72750.85390.87640.065*
C70.2135 (3)0.81085 (13)0.8444 (2)0.0444 (5)
H10A0.22730.74560.86290.053*
H10B0.08280.82180.75710.053*
Cl10.67066 (10)0.70596 (4)0.94037 (8)0.0736 (3)
Cl20.19547 (9)0.86582 (4)1.03025 (7)0.0635 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0465 (11)0.0298 (9)0.0488 (11)0.0015 (8)0.0141 (9)0.0050 (8)
C20.0586 (13)0.0437 (11)0.0440 (11)0.0046 (9)0.0172 (10)0.0002 (8)
C30.0535 (12)0.0389 (11)0.0560 (12)0.0063 (9)0.0241 (10)0.0036 (9)
C40.0424 (11)0.0438 (11)0.0570 (12)0.0062 (8)0.0082 (9)0.0026 (9)
C50.0389 (10)0.0396 (10)0.0443 (10)0.0017 (8)0.0114 (8)0.0017 (8)
C60.0368 (11)0.0513 (12)0.0718 (14)0.0052 (9)0.0101 (10)0.0022 (10)
C70.0397 (11)0.0414 (11)0.0480 (11)0.0012 (8)0.0058 (9)0.0009 (8)
Cl10.0629 (4)0.0603 (4)0.0915 (5)0.0227 (3)0.0119 (3)0.0086 (3)
Cl20.0614 (4)0.0795 (4)0.0538 (4)0.0101 (3)0.0228 (3)0.0004 (3)
Geometric parameters (Å, º) top
C1—C3i1.382 (3)C5—C71.504 (3)
C1—C21.383 (3)C5—C61.520 (3)
C1—C41.515 (3)C5—H80.9800
C2—C31.380 (3)C6—Cl11.786 (2)
C2—H20.9300C6—H9A0.9700
C3—C1i1.382 (3)C6—H9B0.9700
C3—H30.9300C7—Cl21.796 (2)
C4—C51.540 (3)C7—H10A0.9700
C4—H7A0.9700C7—H10B0.9700
C4—H7B0.9700
C3i—C1—C2118.01 (19)C6—C5—C4108.10 (16)
C3i—C1—C4120.55 (19)C7—C5—H8107.2
C2—C1—C4121.44 (18)C6—C5—H8107.2
C3—C2—C1121.17 (19)C4—C5—H8107.2
C3—C2—H2119.4C5—C6—Cl1112.74 (15)
C1—C2—H2119.4C5—C6—H9A109.0
C2—C3—C1i120.82 (19)Cl1—C6—H9A109.0
C2—C3—H3119.6C5—C6—H9B109.0
C1i—C3—H3119.6Cl1—C6—H9B109.0
C1—C4—C5113.20 (15)H9A—C6—H9B107.8
C1—C4—H7A108.9C5—C7—Cl2112.11 (13)
C5—C4—H7A108.9C5—C7—H10A109.2
C1—C4—H7B108.9Cl2—C7—H10A109.2
C5—C4—H7B108.9C5—C7—H10B109.2
H7A—C4—H7B107.8Cl2—C7—H10B109.2
C7—C5—C6113.40 (16)H10A—C7—H10B107.9
C7—C5—C4113.42 (15)
C3i—C1—C2—C30.4 (3)C1—C4—C5—C6176.91 (17)
C4—C1—C2—C3179.85 (17)C7—C5—C6—Cl164.6 (2)
C1—C2—C3—C1i0.4 (3)C4—C5—C6—Cl1168.74 (14)
C3i—C1—C4—C577.5 (2)C6—C5—C7—Cl262.71 (19)
C2—C1—C4—C5102.2 (2)C4—C5—C7—Cl261.10 (19)
C1—C4—C5—C756.4 (2)
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H18Cl4
Mr328.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)6.518 (3), 14.680 (6), 8.433 (4)
β (°) 106.335 (5)
V3)774.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.807, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
4423, 1679, 1275
Rint0.066
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.09
No. of reflections1679
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the financial support of Jiangsu Polytechnic University, the Natural Science Foundation of China (grant No. 20872051) and the Key Laboratory of Fine Petrochemical Engineering of Jiangsu Province (grant No. KF0503).

References

First citationAmabilino, D. B. & Stoddart, J. F. (1995). Chem. Rev. 95, 2725–2737.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChen, A.-H., Wang, Z.-G., Yin, G.-D. & Wu, A.-X. (2005). Acta Cryst. E61, o3240–o3241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, Y., Xi, H., Sun, X., Fu, Y. & Liu, L. (2009). Acta Cryst. E65, o170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds