organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N,N′-Bis(2,6-di­methyl­phen­yl)-N,N′-bis­­(tri­chloro­silyl)ethyl­ene-1,2-di­amine

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: yding@jiangnan.edu.cn

(Received 16 February 2009; accepted 19 February 2009; online 28 February 2009)

The asymmetric unit of the title compound, C18H20Cl6N2Si2, contains one half of the centrosymmetric mol­ecule. The two benzene rings are perpendicular to the plane of Si–N–C=C–N–Si fragment, making a dihedral angle of 89.9 (1)°. The crystal packing exhibits short inter­molecular Cl⋯Cl contacts of 3.3119 (17) Å.

Related literature

For the geometric parameters of related compounds, see: Haaf et al. (1998[Haaf, M., Schmiedl, A., Schmedake, T. A., Powell, D. R., Millevolte, A. J., Denk, M. & West, R. (1998). J. Am. Chem. Soc. 120, 12714-12719.], 2000[Haaf, M., Schmedake, T. A. & West, R. (2000). Acc. Chem. Res. 33, 704-714.]); Baker et al. (2008[Baker, R. J., Jones, C., Mills, D. P., Pierce, G. A. & Waugh, M. (2008). Inorg. Chim. Acta, 361, 427-435.]); Jones et al. (2002[Jones, C., Junk, P. C., Leary, S. G., Smithies, N. A. & Steed, J. W. (2002). Inorg. Chem. Commun. 5, 533-536.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20Cl6N2Si2

  • Mr = 533.24

  • Triclinic, [P \overline 1]

  • a = 8.1858 (3) Å

  • b = 8.4249 (3) Å

  • c = 10.6074 (4) Å

  • α = 74.583 (3)°

  • β = 79.999 (2)°

  • γ = 62.243 (2)°

  • V = 623.00 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 273 K

  • 0.14 × 0.12 × 0.08 mm

Data collection
  • Bruker APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.939

  • 6168 measured reflections

  • 2168 independent reflections

  • 1729 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.202

  • S = 1.11

  • 2168 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), was synthesized by the reaction of the excess silicon tetrachloride and the dilithium salt of the diimine [N(2,6-Me2C6H3)C(H)]2 in THF (Haaf et al., 1998). A high yielding preparation of the title compound was devised whereby two equivalents of SiCl4 were treated with dilithium salt in THF (Baker et al., 2008). The title compound and related compounds are of interest in silylene chemistry in relation to synthesis of the silylene dichloride precursor (Haaf et al., 2000; Baker et al., 2008).

The title molecule (Fig. 1) exists in an E configuration with respect to the CC double bond (Table 1) and crystallizes in the triclinic space group P1.The planes of the two xylyl substituents at the nitrogen atoms are perpendicularly oriented to the plane of Si1/N1/C1/C1i/N1i/Si1i [symmery code: (i) -x, 2-y, -z] forming dihedral angles of 89.9 (1)°. The Si–Cl and Si–N bond lengths in (I) (Table 1) are slightly shorter than those in the related complex (C5H3N-6-Me-2-NSiMe3)SiCl3 [Si–Cl 2.058 (2)-2.107 (3) Å; Si–N 1.753 (5) Å) (Jones et al., 2002). The distance N1–C1[1.428 (4) Å] agrees well with that observed in the related E-ethenediamine complex (Baker et al., 2008). The C1–N1–C2 angle [118.7 (3) °] in (I) is comparable to that in [PhC(NtBu)2]SiCl [120.70 (11) °] (Haaf et al., 1998). The C1–N1–Si1 angle [120.1 (2) °] in (I) is larger than that in [Si[N(tBu)CH]2]2 [109.42 (14) °] (Haaf et al., 1998), because of E configuration.

The crystal packing exhibits short intermolecular Cl···Cl contacts (Table 1).

Related literature top

For the geometric parameters of related compounds, see: Haaf et al. (1998, 2000); Baker et al. (2008); Jones et al. (2002).

Experimental top

All manipulations were carried out under an argon atmosphere using standard Schlenk techniques or a nitrogen-filled glovebox. Solvents (THF, toluene) were dried over sodium and freshly distilled prior to use.

Naphthalene (1.24 g,10 mmol) was dissolved in THF (15 ml) and lithium powder (71 mg, 10 mmol) added. The resultant suspension was stirred at room temperature for 4 h to give an green suspension. [N(2,6-Me2C6H3)C(H)]2 (1.17 g, 4.5 mmol) was added to the suspension after cooled to -78 oC. The resultant mixture was stirred at room temperature for 24 h to give a red solution. At -78 oC, silicon tetrachloride (10 ml, 88 mmol) was added to the solution. Warmed to room temperature and stirred for 24 h. Volatiles were removed in vacuo and the residue was extracted with toluene (20 ml). After filtration, the filtrate was placed at -30 oC to give yellow crystals (43%). Elemental analysis(%) calcd. for C18H20Cl6N2Si2: C, 40.54%; H, 3.78%; N, 5.25%; Found: C,40.61%; H, 3.83%; N, 5.17%.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H of 0.93-0.96 Å, and Uiso(H) = 1.2-1.5 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. The unlabelled atoms are related with the labelled ones by symmetry operation (-x, -y + 2, -z). H atoms omitted for clarity.
(E)-N,N'-Bis(2,6-dimethylphenyl)-N,N'- bis(trichlorosilyl)ethylene-1,2-diamine top
Crystal data top
C18H20Cl6N2Si2Z = 1
Mr = 533.24F(000) = 272
Triclinic, P1Dx = 1.421 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1858 (3) ÅCell parameters from 2127 reflections
b = 8.4249 (3) Åθ = 2.8–25.6°
c = 10.6074 (4) ŵ = 0.79 mm1
α = 74.583 (3)°T = 273 K
β = 79.999 (2)°Block, yellow
γ = 62.243 (2)°0.14 × 0.12 × 0.08 mm
V = 623.00 (4) Å3
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
2168 independent reflections
Radiation source: fine-focus sealed tube1729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.897, Tmax = 0.939k = 109
6168 measured reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.133P)2 + 0.1233P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.202(Δ/σ)max = 0.088
S = 1.11Δρmax = 0.57 e Å3
2168 reflectionsΔρmin = 0.50 e Å3
129 parameters
Crystal data top
C18H20Cl6N2Si2γ = 62.243 (2)°
Mr = 533.24V = 623.00 (4) Å3
Triclinic, P1Z = 1
a = 8.1858 (3) ÅMo Kα radiation
b = 8.4249 (3) ŵ = 0.79 mm1
c = 10.6074 (4) ÅT = 273 K
α = 74.583 (3)°0.14 × 0.12 × 0.08 mm
β = 79.999 (2)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
2168 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1729 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.939Rint = 0.034
6168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.11Δρmax = 0.57 e Å3
2168 reflectionsΔρmin = 0.50 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.34542 (14)0.80312 (14)0.19720 (9)0.0424 (4)
Cl10.40381 (19)1.01460 (17)0.18495 (14)0.0736 (5)
Cl20.54249 (18)0.64298 (19)0.08286 (14)0.0791 (5)
Cl30.36689 (17)0.65899 (17)0.38326 (10)0.0675 (4)
N10.1308 (4)0.8729 (4)0.1525 (3)0.0394 (7)
C10.0820 (5)0.9686 (5)0.0214 (3)0.0424 (9)
H10.17290.98750.03750.051*
C20.0078 (5)0.8409 (5)0.2452 (3)0.0391 (8)
C30.0237 (6)0.6787 (5)0.2607 (4)0.0510 (10)
C40.1436 (6)0.6423 (6)0.3580 (5)0.0630 (12)
H40.15350.53350.37060.076*
C50.2502 (7)0.7654 (8)0.4378 (5)0.0669 (13)
H50.32940.73800.50420.080*
C60.2389 (6)0.9273 (7)0.4189 (4)0.0623 (12)
H60.31301.01030.47160.075*
C70.1181 (6)0.9699 (6)0.3218 (4)0.0484 (9)
C80.0925 (9)0.5424 (7)0.1755 (7)0.0816 (16)
H8A0.21720.47740.20260.122*
H8B0.09170.60640.08580.122*
H8C0.04260.45690.18380.122*
C90.1071 (8)1.1485 (6)0.3024 (6)0.0736 (14)
H9A0.03121.13810.36660.110*
H9B0.22901.24510.31220.110*
H9C0.05411.17610.21620.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0486 (7)0.0433 (6)0.0322 (6)0.0209 (5)0.0094 (4)0.0021 (4)
Cl10.0869 (10)0.0678 (8)0.0823 (9)0.0503 (7)0.0180 (7)0.0021 (6)
Cl20.0655 (8)0.0787 (9)0.0780 (9)0.0180 (7)0.0111 (6)0.0291 (7)
Cl30.0699 (8)0.0822 (8)0.0431 (6)0.0385 (7)0.0239 (5)0.0208 (6)
N10.0483 (18)0.0413 (16)0.0266 (14)0.0197 (14)0.0087 (12)0.0002 (12)
C10.054 (2)0.0413 (19)0.0289 (18)0.0214 (18)0.0087 (15)0.0009 (15)
C20.047 (2)0.0440 (19)0.0252 (16)0.0215 (17)0.0092 (14)0.0006 (15)
C30.059 (3)0.046 (2)0.050 (2)0.025 (2)0.0104 (19)0.0050 (18)
C40.064 (3)0.061 (3)0.068 (3)0.038 (2)0.009 (2)0.002 (2)
C50.061 (3)0.094 (4)0.047 (2)0.045 (3)0.001 (2)0.001 (2)
C60.054 (3)0.082 (3)0.045 (2)0.024 (2)0.0039 (19)0.021 (2)
C70.052 (2)0.050 (2)0.040 (2)0.0185 (19)0.0105 (17)0.0067 (17)
C80.096 (4)0.059 (3)0.100 (4)0.039 (3)0.013 (3)0.035 (3)
C90.085 (4)0.059 (3)0.081 (3)0.029 (3)0.004 (3)0.033 (3)
Geometric parameters (Å, º) top
Si1—N11.684 (3)C4—H40.9300
Si1—Cl32.0119 (13)C5—C61.369 (7)
Si1—Cl22.0142 (17)C5—H50.9300
Si1—Cl12.0170 (14)C6—C71.396 (6)
N1—C11.428 (4)C6—H60.9300
N1—C21.444 (4)C7—C91.507 (6)
C1—C1i1.307 (8)C8—H8A0.9600
C1—H10.9300C8—H8B0.9600
C2—C71.399 (6)C8—H8C0.9600
C2—C31.397 (5)C9—H9A0.9600
C3—C41.372 (6)C9—H9B0.9600
C3—C81.509 (7)C9—H9C0.9600
C4—C51.386 (7)
Cl3···Cl3ii3.3119 (17)
N1—Si1—Cl3108.46 (11)C6—C5—C4120.1 (4)
N1—Si1—Cl2112.31 (12)C6—C5—H5120.0
Cl3—Si1—Cl2108.64 (7)C4—C5—H5120.0
N1—Si1—Cl1112.55 (11)C5—C6—C7121.1 (4)
Cl3—Si1—Cl1109.04 (7)C5—C6—H6119.4
Cl2—Si1—Cl1105.73 (7)C7—C6—H6119.4
C1—N1—C2118.7 (3)C2—C7—C6117.8 (4)
C1—N1—Si1120.1 (2)C2—C7—C9121.8 (4)
C2—N1—Si1121.2 (2)C6—C7—C9120.4 (4)
C1i—C1—N1124.4 (4)C3—C8—H8A109.5
C1i—C1—H1117.8C3—C8—H8B109.5
N1—C1—H1117.8H8A—C8—H8B109.5
C7—C2—C3121.4 (3)C3—C8—H8C109.5
C7—C2—N1119.1 (3)H8A—C8—H8C109.5
C3—C2—N1119.5 (3)H8B—C8—H8C109.5
C4—C3—C2118.7 (4)C7—C9—H9A109.5
C4—C3—C8120.2 (4)C7—C9—H9B109.5
C2—C3—C8121.0 (4)H9A—C9—H9B109.5
C3—C4—C5120.9 (4)C7—C9—H9C109.5
C3—C4—H4119.6H9A—C9—H9C109.5
C5—C4—H4119.5H9B—C9—H9C109.5
Cl3—Si1—N1—C1176.0 (2)N1—C2—C3—C4173.7 (4)
Cl2—Si1—N1—C155.9 (3)C7—C2—C3—C8178.5 (4)
Cl1—Si1—N1—C163.3 (3)N1—C2—C3—C84.4 (6)
Cl3—Si1—N1—C25.2 (3)C2—C3—C4—C51.4 (7)
Cl2—Si1—N1—C2125.3 (3)C8—C3—C4—C5179.5 (5)
Cl1—Si1—N1—C2115.5 (3)C3—C4—C5—C61.0 (7)
C2—N1—C1—C1i0.4 (7)C4—C5—C6—C71.5 (7)
Si1—N1—C1—C1i178.4 (4)C3—C2—C7—C62.9 (6)
C1—N1—C2—C791.3 (4)N1—C2—C7—C6174.2 (3)
Si1—N1—C2—C787.6 (4)C3—C2—C7—C9177.7 (4)
C1—N1—C2—C391.6 (4)N1—C2—C7—C95.2 (6)
Si1—N1—C2—C389.6 (4)C5—C6—C7—C20.5 (6)
C7—C2—C3—C43.4 (6)C5—C6—C7—C9179.9 (5)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H20Cl6N2Si2
Mr533.24
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.1858 (3), 8.4249 (3), 10.6074 (4)
α, β, γ (°)74.583 (3), 79.999 (2), 62.243 (2)
V3)623.00 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.14 × 0.12 × 0.08
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.897, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
6168, 2168, 1729
Rint0.034
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.202, 1.11
No. of reflections2168
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.50

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected interatomic distances (Å) top
Si1—N11.684 (3)Si1—Cl12.0170 (14)
Si1—Cl32.0119 (13)C1—C1i1.307 (8)
Si1—Cl22.0142 (17)
Cl3···Cl3ii3.3119 (17)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the National Science Foundation of China (No. 20571033) and by the Program for New Century Excellent Talents in Universities (NCET-06-0483).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaker, R. J., Jones, C., Mills, D. P., Pierce, G. A. & Waugh, M. (2008). Inorg. Chim. Acta, 361, 427-435.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationHaaf, M., Schmedake, T. A. & West, R. (2000). Acc. Chem. Res. 33, 704-714.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHaaf, M., Schmiedl, A., Schmedake, T. A., Powell, D. R., Millevolte, A. J., Denk, M. & West, R. (1998). J. Am. Chem. Soc. 120, 12714-12719.  Web of Science CSD CrossRef CAS Google Scholar
First citationJones, C., Junk, P. C., Leary, S. G., Smithies, N. A. & Steed, J. W. (2002). Inorg. Chem. Commun. 5, 533-536.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds