metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(4-methyl­benzoato-κ2O,O′)zinc(II)]-μ-4,4′-bi­pyridine-κ2N:N′] tetra­hydrate]

aDepartment of Chemistry, Taishan University, 271000 Taishan, Shandong, People's Republic of China, and bDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: hanyf1978@163.com

(Received 17 September 2008; accepted 17 February 2009; online 28 February 2009)

The asymmetric unit of the title compound, {[Zn(C7H7O2)2(C10H8N2)]·4H2O}n, contains a highly distorted octa­hedral ZnII metal center strongly coordinated by two N atoms of two 4,4′-bipyridine (4,4′-bipy) ligands and chelated by two 4-methyl­benzoate anions. The crystallographic inversion center and glide plane present at the center of the C—C single bond of 4,4′-bipy, along with the cis coordination motif of the 4,4′-bipy, lead to one-dimensional zigzag chains. There are a large number of water mol­ecules in the crystal structure, which also form one-dimensional chains through O—H⋯O hydrogen bonds.

Related literature

For inorganic–organic hybrid frameworks containing d-block transition metal ions and pyridyl ligands, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Horikoshi & Mochida (2006[Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595-2609.]); Fujita et al. (1994[Fujita, M., Kwon, S. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]); Luan et al. (2005[Luan, X.-J., Wang, Y.-Y., Li, D.-S., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2005). Angew. Chem. Int. Ed. 44, 3864-3867.]); Tao et al. (2002[Tao, J., Yin, X., Huang, R. B. & Zheng, L. S. (2002). Inorg. Chem. Commun. 5, 1000-1002.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H7O2)2(C10H8N2)]·4H2O

  • Mr = 563.89

  • Monoclinic, C 2/c

  • a = 12.024 (5) Å

  • b = 18.803 (8) Å

  • c = 12.283 (5) Å

  • β = 98.063 (6)°

  • V = 2750 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 K

  • 0.25 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.799, Tmax = 0.820

  • 9512 measured reflections

  • 2439 independent reflections

  • 2306 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 0.90

  • 2439 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O4i 0.85 1.93 2.761 (7) 167
O3—H3A⋯O2ii 0.85 1.93 2.777 (4) 179
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently much attention has been paid to inorganic-organic hybrid frameworks that contain d-block transition metal ions and pyridyl ligands (Batten & Robson, 1998; Horikoshi & Mochida, 2006). These inorganic-organic hybrid frameworks form a wide range of interesting network topologies, such as chains, ladders or grids (Fujita et al., 1994; Luan et al. 2005). In these compounds, the combination of 4,4'-bipy and carboxylate ligands is largely directed toward obtaining interesting topologies (Tao et al., 2002). Here, we report the synthesis and crystal structure of the title complex, 1, which combines 4,4'-bipy and 4-methylbenzoate ligands.

Single-crystal X-ray diffraction studies reveal that the asymmetric unit contains the basic building block of 1, C26H22N2O4Cd.4(H2O), as shown in Figure 1. The highly distorted octahedral ZnII metal center is strongly coordinated to two N atoms of two 4,4'-bipy ligands [Zn—N, 2.064 (2) Å] and chelated to two 4-methylbenzoate anions [Zn1—O1, 2.159 (3) Å and Zn1—O2, 2.261 (3) Å]. The crystallographic inversion center and glide plane present at the center of the carbon-carbon single bond of the 4,4'-bipy ligand generate one-dimensional zig-zag coordination polymers. The zig-zag chains run approximately in parallel, as shown in Figure 2. The N1—Zn1—N1A [A: -x, y, 0.5 - z] angle of 105.4 (3)°, contributes to the chelate formation of the 4-methylbenzoate anions. The dihedral angles between the planes through 4,4'-bipy and 4-methylbenzoate are 84.68 (2)°. The Zn···Zn distances separated by the 4,4'-bipy are 11.20 (2) Å. The large number of included water molecules form one-dimensional chains through O—H···O hydrogen bonds.

Related literature top

For inorganic–organic hybrid frameworks containing d-block transition metal ions and pyridyl ligands, see: Batten & Robson (1998); Horikoshi & Mochida (2006); Fujita et al. (1994); Luan et al. (2005); Tao et al. (2002).

Experimental top

Zinc dichloride hexahydrate (2 mmol), 4-methylbenzoic acid (4 mmol) and 4,4'-bipy (2 mmol) were dissolved in a 3:1 ethanol-water solution (20 ml). Aqueous 0.1 M sodium hydroxide was added until the solution registered a pH of 7. The solution was set aside for the growth of crystals over several days. Anal. calc. for C26H30N2O8Zn: C 55.38, H 5.36, N 4.97%. Found: C 55.25, H 5.40, N 4.86%.

Refinement top

All H atoms bound to C were placed in idealized positions (C—H = 0.93—0.97 Å) and refined as riding atoms, with the Uiso(H) = 1.2 or 1.5Ueq(C). Some H atoms bound to O were treated for 50:50 disorder, with all O—H bond lengths of 0.850 and Uiso(H) = 1.2 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme (A: -x, y, 0.5 - z).
[Figure 2] Fig. 2. The zig-zag chains of (I), with dashed lines indicating O—H···O hydrogen bonds.
catena-Poly[[[bis(4-methylbenzoato-κ2O,O')zinc(II)]-µ-4,4'-bipyridine-κ2N:N'] tetrahydrate] top
Crystal data top
[Zn(C7H7O2)2(C10H8N2)]·4H2OF(000) = 1176
Mr = 563.89Dx = 1.362 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 921 reflections
a = 12.024 (5) Åθ = 2.7–28.1°
b = 18.803 (8) ŵ = 0.94 mm1
c = 12.283 (5) ÅT = 298 K
β = 98.063 (6)°Block, yellow
V = 2750 (2) Å30.25 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2439 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.799, Tmax = 0.820k = 2222
9512 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0704P)2 + 5.1543P]
where P = (Fo2 + 2Fc2)/3
2439 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Zn(C7H7O2)2(C10H8N2)]·4H2OV = 2750 (2) Å3
Mr = 563.89Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.024 (5) ŵ = 0.94 mm1
b = 18.803 (8) ÅT = 298 K
c = 12.283 (5) Å0.25 × 0.23 × 0.22 mm
β = 98.063 (6)°
Data collection top
Bruker APEX area-detector
diffractometer
2439 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2306 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 0.820Rint = 0.065
9512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 0.90Δρmax = 0.41 e Å3
2439 reflectionsΔρmin = 0.36 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00000.07933 (2)0.25000.04633 (19)
O10.1310 (2)0.06512 (15)0.3876 (2)0.0757 (7)
O20.1328 (2)0.00574 (12)0.2496 (2)0.0744 (6)
N10.0873 (2)0.14583 (12)0.15842 (18)0.0468 (5)
C10.1739 (3)0.01398 (17)0.3444 (3)0.0587 (8)
C20.2720 (2)0.02359 (15)0.4060 (3)0.0529 (7)
C30.2954 (3)0.01735 (18)0.5189 (3)0.0658 (8)
H30.25220.01270.55600.079*
C40.3823 (3)0.0552 (2)0.5773 (3)0.0734 (10)
H40.39610.05070.65340.088*
C50.4488 (3)0.09957 (19)0.5252 (3)0.0695 (9)
C60.5420 (4)0.1422 (3)0.5892 (4)0.1006 (15)
H6A0.59050.16030.53990.151*
H6B0.51050.18110.62520.151*
H6C0.58440.11230.64320.151*
C70.4265 (3)0.1047 (2)0.4118 (4)0.0744 (10)
H70.47170.13350.37480.089*
C80.3386 (3)0.06778 (18)0.3519 (3)0.0636 (8)
H80.32440.07270.27590.076*
C90.1610 (3)0.19327 (18)0.2051 (2)0.0670 (9)
H90.16950.19840.28110.080*
C100.2254 (3)0.23496 (18)0.1467 (2)0.0650 (9)
H100.27510.26780.18310.078*
C110.2161 (2)0.22802 (13)0.0331 (2)0.0436 (6)
C120.1406 (3)0.17860 (16)0.0138 (2)0.0528 (7)
H120.13120.17170.08960.063*
C130.0785 (3)0.13905 (17)0.0500 (2)0.0542 (7)
H130.02800.10590.01550.065*
O30.0969 (2)0.14890 (13)0.70161 (19)0.0729 (7)
H3A0.10860.10500.71560.088*
H3B0.13080.16020.64790.088*0.50
H3C0.02690.15660.68550.088*0.50
O40.2054 (4)0.1867 (2)0.5310 (4)0.1517 (19)
H4A0.18760.15570.48130.182*
H4B0.23220.22280.50210.182*0.50
H4C0.14850.19830.56100.182*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0510 (3)0.0440 (3)0.0457 (3)0.0000.01289 (19)0.000
O10.0696 (15)0.0948 (17)0.0643 (12)0.0361 (14)0.0153 (9)0.0181 (11)
O20.0714 (15)0.0537 (12)0.0922 (16)0.0085 (9)0.0095 (13)0.0086 (10)
N10.0511 (13)0.0467 (12)0.0435 (12)0.0026 (10)0.0095 (10)0.0015 (9)
C10.0548 (18)0.0560 (17)0.069 (2)0.0016 (14)0.0215 (15)0.0166 (15)
C20.0486 (16)0.0478 (15)0.0642 (18)0.0014 (12)0.0150 (13)0.0029 (13)
C30.075 (2)0.0558 (17)0.067 (2)0.0092 (16)0.0112 (16)0.0018 (15)
C40.082 (3)0.0650 (19)0.069 (2)0.0048 (19)0.0048 (18)0.0014 (17)
C50.0543 (19)0.0577 (18)0.093 (3)0.0000 (15)0.0008 (18)0.0053 (18)
C60.074 (3)0.087 (3)0.134 (4)0.015 (2)0.008 (3)0.015 (3)
C70.058 (2)0.062 (2)0.107 (3)0.0102 (16)0.0253 (19)0.005 (2)
C80.062 (2)0.0624 (18)0.069 (2)0.0046 (15)0.0179 (16)0.0025 (15)
C90.093 (3)0.070 (2)0.0378 (14)0.0261 (18)0.0110 (15)0.0016 (14)
C100.086 (2)0.0665 (19)0.0415 (15)0.0329 (17)0.0068 (14)0.0032 (13)
C110.0483 (14)0.0419 (13)0.0410 (13)0.0010 (11)0.0071 (11)0.0014 (10)
C120.0562 (17)0.0639 (17)0.0387 (13)0.0126 (14)0.0082 (12)0.0048 (12)
C130.0552 (17)0.0625 (17)0.0465 (15)0.0146 (14)0.0122 (12)0.0072 (13)
O30.0812 (17)0.0674 (14)0.0682 (15)0.0017 (12)0.0035 (12)0.0014 (11)
O40.194 (4)0.105 (3)0.183 (4)0.051 (3)0.121 (4)0.034 (3)
Geometric parameters (Å, º) top
Zn1—N1i2.064 (2)C6—H6A0.9600
Zn1—N12.064 (2)C6—H6B0.9600
Zn1—O12.159 (3)C6—H6C0.9600
Zn1—O1i2.159 (3)C7—C81.386 (5)
Zn1—O22.261 (3)C7—H70.9300
Zn1—O2i2.261 (3)C8—H80.9300
Zn1—C1i2.559 (3)C9—C101.372 (4)
Zn1—C12.559 (3)C9—H90.9300
O1—C11.245 (4)C10—C111.390 (4)
O2—C11.255 (4)C10—H100.9300
N1—C91.330 (4)C11—C121.369 (4)
N1—C131.328 (4)C11—C11ii1.481 (5)
C1—C21.487 (4)C12—C131.374 (4)
C2—C81.386 (4)C12—H120.9300
C2—C31.381 (5)C13—H130.9300
C3—C41.379 (5)O3—H3A0.8501
C3—H30.9300O3—H3B0.8500
C4—C51.374 (6)O3—H3C0.8500
C4—H40.9300O4—H4A0.8500
C5—C71.385 (6)O4—H4B0.8501
C5—C61.506 (5)O4—H4C0.8501
N1i—Zn1—N1105.44 (13)C4—C3—C2120.7 (3)
N1i—Zn1—O191.10 (10)C4—C3—H3119.6
N1—Zn1—O197.52 (10)C2—C3—H3119.6
N1i—Zn1—O1i97.52 (10)C5—C4—C3121.3 (4)
N1—Zn1—O1i91.10 (9)C5—C4—H4119.4
O1—Zn1—O1i165.78 (15)C3—C4—H4119.4
N1i—Zn1—O2147.44 (10)C4—C5—C7117.8 (3)
N1—Zn1—O290.82 (10)C4—C5—C6121.3 (4)
O1—Zn1—O258.40 (10)C7—C5—C6120.8 (4)
O1i—Zn1—O2110.41 (10)C5—C6—H6A109.5
N1i—Zn1—O2i90.82 (10)C5—C6—H6B109.5
N1—Zn1—O2i147.44 (10)H6A—C6—H6B109.5
O1—Zn1—O2i110.41 (10)C5—C6—H6C109.5
O1i—Zn1—O2i58.40 (10)H6A—C6—H6C109.5
O2—Zn1—O2i89.92 (14)H6B—C6—H6C109.5
N1i—Zn1—C1i95.29 (10)C8—C7—C5121.6 (3)
N1—Zn1—C1i119.32 (10)C8—C7—H7119.2
O1—Zn1—C1i139.05 (12)C5—C7—H7119.2
O1i—Zn1—C1i29.05 (10)C7—C8—C2119.7 (3)
O2—Zn1—C1i101.07 (10)C7—C8—H8120.2
O2i—Zn1—C1i29.36 (10)C2—C8—H8120.2
N1i—Zn1—C1119.31 (10)N1—C9—C10123.3 (3)
N1—Zn1—C195.29 (10)N1—C9—H9118.4
O1—Zn1—C129.05 (10)C10—C9—H9118.4
O1i—Zn1—C1139.05 (12)C9—C10—C11120.0 (3)
O2—Zn1—C129.36 (10)C9—C10—H10120.0
O2i—Zn1—C1101.07 (10)C11—C10—H10120.0
C1i—Zn1—C1122.60 (15)C12—C11—C10116.2 (3)
C1—O1—Zn193.6 (2)C12—C11—C11ii122.0 (3)
C1—O2—Zn188.6 (2)C10—C11—C11ii121.8 (3)
C9—N1—C13116.8 (2)C13—C12—C11120.6 (3)
C9—N1—Zn1122.06 (19)C13—C12—H12119.7
C13—N1—Zn1120.93 (19)C11—C12—H12119.7
O1—C1—O2119.4 (3)N1—C13—C12123.2 (3)
O1—C1—C2119.8 (3)N1—C13—H13118.4
O2—C1—C2120.8 (3)C12—C13—H13118.4
O1—C1—Zn157.36 (18)H3A—O3—H3B108.4
O2—C1—Zn162.03 (18)H3A—O3—H3C110.1
C2—C1—Zn1176.3 (2)H3B—O3—H3C110.1
C8—C2—C3118.8 (3)H4A—O4—H4B108.7
C8—C2—C1120.7 (3)H4A—O4—H4C110.5
C3—C2—C1120.4 (3)H4B—O4—H4C110.5
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O4iii0.851.932.761 (7)167
O3—H3A···O2iv0.851.932.777 (4)179
Symmetry codes: (iii) x+1/2, y+1/2, z+1; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C7H7O2)2(C10H8N2)]·4H2O
Mr563.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.024 (5), 18.803 (8), 12.283 (5)
β (°) 98.063 (6)
V3)2750 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.25 × 0.23 × 0.22
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.799, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
9512, 2439, 2306
Rint0.065
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 0.90
No. of reflections2439
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O4i0.851.932.761 (7)167.3
O3—H3A···O2ii0.851.932.777 (4)178.8
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University (grant No. Y06-2-12) for financial support.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (2003). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujita, M., Kwon, S. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationHorikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595–2609.  Web of Science CrossRef CAS Google Scholar
First citationLuan, X.-J., Wang, Y.-Y., Li, D.-S., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2005). Angew. Chem. Int. Ed. 44, 3864–3867.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Yin, X., Huang, R. B. & Zheng, L. S. (2002). Inorg. Chem. Commun. 5, 1000–1002.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds