organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(Heptane-1,7-di­yl)dibenz­imidazo­lium chloride nitrate monohydrate

aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: sci.yqzhang@gzu.edu.cn

(Received 8 January 2009; accepted 21 February 2009; online 28 February 2009)

In the title compound, C21H26N42+·Cl·NO3·H2O, the organic cations, anions and water mol­ecules are linked through N—H⋯Cl, N—H⋯O, N—H⋯N and O—H⋯Cl hydrogen bonds, forming a three-dimensional framework, assisted by C—H⋯π inter­actions.

Related literature

For general background regarding inter­actions of linear polyaromatic compounds with cucurbit[n]urils, see: Day & Arnold (2000[Day, A. I. & Arnold, A. P. (2000). Patent No. WO/2000/068232.]); Day et al. (2002[Day, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. Engl. 41, 275-277.]); Freeman et al. (1981[Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367-7370.]); Kim et al. (2000[Kim, J., Jung, I. S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540-541.]). For the synthesis, see: Wang & Joullié (1957[Wang, L. L. Y. & Joullié, M. M. (1957). J. Am. Chem. Soc. 79, 5706-5708.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N42+·Cl·NO3·H2O

  • Mr = 449.93

  • Orthorhombic, P c a 21

  • a = 24.462 (10) Å

  • b = 5.102 (2) Å

  • c = 18.210 (7) Å

  • V = 2272.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.31 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.964

  • 14275 measured reflections

  • 2086 independent reflections

  • 1619 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.084

  • S = 1.03

  • 2086 reflections

  • 288 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.86 2.22 3.066 (3) 168
N2—H2A⋯O3i 0.86 1.94 2.778 (4) 164
N2—H2A⋯O1i 0.86 2.53 3.243 (4) 141
N2—H2A⋯N5i 0.86 2.59 3.436 (5) 168
N3—H3A⋯O2ii 0.86 1.95 2.807 (4) 177
N4—H4A⋯O1Wiii 0.86 1.87 2.730 (4) 173
O1W—H1WA⋯Cl1 0.927 (19) 2.19 (2) 3.088 (4) 163 (4)
O1W—H1WB⋯Cl1iv 0.83 (2) 2.31 (3) 3.099 (3) 159 (5)
C10—H10ACg3v 0.97 3.36 4.148 (4) 140
C11—H11BCg4vi 0.97 3.21 4.047 (4) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (vi) [-x, -y+1, z-{\script{1\over 2}}]. Cg3 and Cg4 are the centroids of the C1–C6 and C16–C21 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This paper describes the preparation and structure of a new linear polyaromatic compound (I) in which the multiple functional groups can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman et al.,1981; Day & Arnold, 2000; Day et al., 2002; Kim et al., 2000).

The molecular structure of (I), shown in Fig. 1, consists of one organic cation, one Cl- anion, one NO3- anion and one lattice water molecule. The two benzimidazole groups of the organic cation are not co-planar, but are oriented at a dihedral angle of 78.42 (6) ° with respect to each other. Molecules are linked via an N1—H1A···Cl1, N2—H2A···O3, N2—H2A···O1, N2—H2A···N5, N3—H3A···O2, N4—H4A···O1W and O1W—H1WA···Cl1 network of hydrogen bonds (Table 1) forming a three-dimensional framework. In addition, C—H···π interactions occur between adjacent organic cations (Table 1, Cg(3) and Cg(4) are the centroids of the C1—C6 and C16—C21 benzene rings, respectively).

Related literature top

For general background regarding interactions of linear polyaromatic compounds with cucurbit[n]urils, see: Day & Arnold (2000); Day et al. (2002); Freeman et al. (1981); Kim et al. (2000). For the synthesis, see: Wang & Joullié (1957). Cg(3) and Cg(4) are the centroids of the C1–C6 and C16–C21 benzene rings, respectively.

Experimental top

A solution of o-phenylenediamine (5.40 g, 0.05 mol) and azelaic acid (4.71 g, 0.025 mol) were refluxed for twelve hours in 50 ml of 4M HCl. The reaction mixture was then cooled for one day and the blue crystalline 2,2'-(Heptane-1,7-diyl)dibenzimidazolium dihydrochloride which separated was removed by filtration and dried (Wang et al., 1957). Yield: 31%. The dihydrochloride (2.03 g, 5 mmol) and lanthanum nitrate (3.25 g, 10 mmol) were refluxed for three h in 50 ml water, and the mixture was cooled and filtered. Upon standing at room temperature, crystals of title compound (I) were obtained after several days.

Refinement top

The water H atoms were located in a difference Fourier synthesis and refined with distances restrained to O—H = O.82 (2) Å and H—H =1.37 (4) Å, with Uiso(H) =1.2Ueq(O). All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq (C, N). In the absence of significant anomalous scattering, Friedel equivalents (900 pairs) were merged before the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with the atom-labelling scheme and 50% probability displacement ellipsoids.
2,2'-(Heptane-1,7-diyl)dibenzimidazolium chloride nitrate monohydrate top
Crystal data top
C21H26N42+·Cl·NO3·H2OF(000) = 952
Mr = 449.93Dx = 1.315 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 3986 reflections
a = 24.462 (10) Åθ = 1.7–25.1°
b = 5.102 (2) ŵ = 0.21 mm1
c = 18.210 (7) ÅT = 293 K
V = 2272.5 (15) Å3Prism, colorless
Z = 40.31 × 0.22 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2086 independent reflections
Radiation source: fine-focus sealed tube1619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2629
Tmin = 0.939, Tmax = 0.964k = 66
14275 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.1227P]
where P = (Fo2 + 2Fc2)/3
2086 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.19 e Å3
5 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H26N42+·Cl·NO3·H2OV = 2272.5 (15) Å3
Mr = 449.93Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 24.462 (10) ŵ = 0.21 mm1
b = 5.102 (2) ÅT = 293 K
c = 18.210 (7) Å0.31 × 0.22 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2086 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1619 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.964Rint = 0.063
14275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0385 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
2086 reflectionsΔρmin = 0.17 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31252 (16)0.2574 (8)0.5321 (2)0.0467 (10)
H10.33580.12580.51560.056*
C20.28978 (16)0.4345 (8)0.4846 (2)0.0538 (11)
H20.29750.42260.43470.065*
C30.25529 (18)0.6318 (8)0.5097 (3)0.0548 (11)
H30.24100.74960.47580.066*
C40.24142 (16)0.6603 (7)0.5822 (3)0.0504 (11)
H40.21800.79230.59810.061*
C50.26436 (14)0.4805 (7)0.6308 (2)0.0409 (9)
C60.29941 (15)0.2824 (7)0.60581 (19)0.0391 (9)
C70.29322 (16)0.2498 (7)0.7275 (2)0.0397 (9)
C80.30248 (17)0.1623 (8)0.8034 (2)0.0487 (10)
H8A0.31790.01290.80230.058*
H8B0.26750.15160.82820.058*
C90.34010 (15)0.3376 (7)0.8482 (2)0.0443 (10)
H9A0.32350.50920.85370.053*
H9B0.37450.35940.82240.053*
C100.35076 (16)0.2195 (7)0.9238 (2)0.0440 (10)
H10A0.31590.17960.94660.053*
H10B0.37030.05550.91760.053*
C110.38324 (16)0.3936 (8)0.9753 (2)0.0445 (10)
H11A0.36400.55840.98180.053*
H11B0.41850.43160.95340.053*
C120.39191 (15)0.2656 (7)1.0503 (2)0.0478 (11)
H12A0.35710.19851.06750.057*
H12B0.41630.11731.04420.057*
C130.41530 (16)0.4448 (8)1.1086 (2)0.0479 (10)
H13A0.38910.58201.11970.057*
H13B0.44830.52711.09010.057*
C140.42850 (16)0.2939 (7)1.1783 (2)0.0475 (9)
H14A0.39780.18101.18990.057*
H14B0.45980.18191.16880.057*
C150.44061 (15)0.4573 (7)1.2432 (2)0.0415 (9)
C160.47804 (15)0.7535 (7)1.3163 (2)0.0424 (9)
C170.44065 (15)0.6095 (8)1.3572 (2)0.0442 (10)
C180.43226 (17)0.6605 (9)1.4312 (2)0.0579 (12)
H180.40770.56271.45890.070*
C190.46186 (18)0.8618 (10)1.4617 (3)0.0627 (12)
H190.45710.90061.51120.075*
C200.4989 (2)1.0102 (10)1.4205 (3)0.0607 (12)
H200.51761.14731.44280.073*
C210.50813 (17)0.9566 (8)1.3469 (2)0.0528 (11)
H210.53331.05191.31940.063*
N10.31566 (11)0.1448 (6)0.66844 (17)0.0403 (7)
H1A0.33710.01130.66850.048*
N20.26120 (12)0.4500 (6)0.70671 (16)0.0417 (8)
H2A0.24180.54470.73570.050*
N30.41815 (12)0.4278 (6)1.30898 (16)0.0429 (8)
H3A0.39350.31421.32010.051*
N40.47645 (12)0.6521 (6)1.24534 (17)0.0430 (8)
H4A0.49560.70691.20880.052*
N50.32105 (13)0.8845 (7)1.2993 (2)0.0466 (8)
O10.32896 (15)0.9063 (7)1.23308 (19)0.0857 (11)
O20.34026 (11)1.0441 (6)1.34445 (16)0.0608 (8)
O1W0.46016 (12)0.2164 (7)0.62756 (17)0.0558 (8)
O30.29200 (12)0.6979 (5)1.32219 (16)0.0584 (8)
Cl10.40293 (4)0.28231 (18)0.68522 (7)0.0628 (3)
H1WA0.4422 (19)0.087 (7)0.654 (3)0.11 (2)*
H1WB0.4403 (18)0.347 (6)0.633 (3)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.050 (2)0.051 (3)0.0075 (19)0.001 (2)0.007 (2)
C20.052 (3)0.058 (3)0.051 (3)0.013 (2)0.005 (2)0.001 (2)
C30.055 (3)0.058 (3)0.052 (3)0.014 (2)0.015 (2)0.010 (2)
C40.041 (2)0.039 (2)0.072 (3)0.0037 (18)0.011 (2)0.003 (2)
C50.038 (2)0.042 (2)0.042 (2)0.0061 (18)0.0078 (19)0.0017 (19)
C60.034 (2)0.040 (2)0.043 (2)0.0050 (17)0.0119 (18)0.0048 (18)
C70.036 (2)0.040 (2)0.043 (2)0.0067 (18)0.0029 (18)0.0000 (18)
C80.047 (2)0.049 (2)0.050 (3)0.009 (2)0.0036 (19)0.003 (2)
C90.044 (2)0.040 (2)0.049 (2)0.0033 (18)0.0060 (19)0.0042 (19)
C100.043 (2)0.041 (2)0.048 (2)0.0021 (18)0.0019 (19)0.0014 (19)
C110.039 (2)0.050 (2)0.045 (2)0.0013 (18)0.0053 (18)0.0036 (19)
C120.046 (3)0.048 (3)0.049 (3)0.0009 (19)0.001 (2)0.004 (2)
C130.046 (2)0.044 (2)0.053 (2)0.0043 (19)0.006 (2)0.004 (2)
C140.055 (2)0.043 (2)0.044 (2)0.0017 (18)0.004 (2)0.001 (2)
C150.039 (2)0.040 (2)0.046 (2)0.0059 (18)0.0013 (19)0.004 (2)
C160.035 (2)0.044 (2)0.049 (2)0.0078 (18)0.0055 (19)0.002 (2)
C170.037 (2)0.049 (2)0.046 (2)0.0086 (19)0.002 (2)0.005 (2)
C180.049 (3)0.075 (3)0.050 (3)0.008 (2)0.002 (2)0.004 (2)
C190.056 (3)0.076 (3)0.055 (3)0.010 (3)0.009 (2)0.022 (3)
C200.058 (3)0.052 (3)0.072 (3)0.007 (2)0.025 (2)0.010 (2)
C210.042 (2)0.050 (3)0.066 (3)0.005 (2)0.015 (2)0.000 (2)
N10.0339 (16)0.0401 (17)0.047 (2)0.0016 (14)0.0051 (16)0.0020 (16)
N20.0368 (17)0.0398 (18)0.049 (2)0.0008 (15)0.0004 (15)0.0055 (15)
N30.0347 (17)0.0455 (19)0.048 (2)0.0013 (15)0.0025 (15)0.0002 (17)
N40.0441 (19)0.0424 (18)0.043 (2)0.0015 (15)0.0007 (16)0.0003 (15)
N50.0362 (18)0.042 (2)0.062 (2)0.0067 (16)0.0008 (18)0.0029 (19)
O10.105 (3)0.096 (3)0.056 (2)0.042 (2)0.014 (2)0.002 (2)
O20.0548 (18)0.0584 (18)0.069 (2)0.0157 (15)0.0000 (16)0.0166 (17)
O1W0.0483 (18)0.058 (2)0.061 (2)0.0063 (16)0.0040 (15)0.0109 (17)
O30.0575 (18)0.0548 (18)0.0628 (19)0.0141 (15)0.0010 (16)0.0030 (15)
Cl10.0477 (6)0.0446 (5)0.0960 (9)0.0035 (5)0.0071 (6)0.0021 (6)
Geometric parameters (Å, º) top
C1—C21.369 (5)C13—C141.519 (5)
C1—C61.385 (5)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C31.391 (6)C14—C151.477 (5)
C2—H20.9300C14—H14A0.9700
C3—C41.372 (6)C14—H14B0.9700
C3—H30.9300C15—N31.326 (5)
C4—C51.393 (5)C15—N41.326 (5)
C4—H40.9300C16—C211.387 (5)
C5—N21.393 (4)C16—C171.389 (5)
C5—C61.402 (5)C16—N41.393 (5)
C6—N11.397 (4)C17—C181.388 (5)
C7—N11.320 (5)C17—N31.390 (5)
C7—N21.341 (4)C18—C191.374 (6)
C7—C81.471 (5)C18—H180.9300
C8—C91.520 (5)C19—C201.398 (7)
C8—H8A0.9700C19—H190.9300
C8—H8B0.9700C20—C211.387 (6)
C9—C101.527 (5)C20—H200.9300
C9—H9A0.9700C21—H210.9300
C9—H9B0.9700N1—H1A0.8600
C10—C111.516 (5)N2—H2A0.8600
C10—H10A0.9700N3—H3A0.8600
C10—H10B0.9700N4—H4A0.8600
C11—C121.528 (5)N5—O11.227 (4)
C11—H11A0.9700N5—O21.248 (4)
C11—H11B0.9700N5—O31.259 (4)
C12—C131.514 (5)O1W—H1WA0.927 (19)
C12—H12A0.9700O1W—H1WB0.83 (2)
C12—H12B0.9700
C2—C1—C6117.2 (4)H12A—C12—H12B107.5
C2—C1—H1121.4C12—C13—C14111.1 (3)
C6—C1—H1121.4C12—C13—H13A109.4
C1—C2—C3121.1 (4)C14—C13—H13A109.4
C1—C2—H2119.4C12—C13—H13B109.4
C3—C2—H2119.4C14—C13—H13B109.4
C4—C3—C2122.9 (4)H13A—C13—H13B108.0
C4—C3—H3118.6C15—C14—C13115.2 (3)
C2—C3—H3118.6C15—C14—H14A108.5
C3—C4—C5116.3 (4)C13—C14—H14A108.5
C3—C4—H4121.9C15—C14—H14B108.5
C5—C4—H4121.9C13—C14—H14B108.5
N2—C5—C4133.0 (4)H14A—C14—H14B107.5
N2—C5—C6106.0 (3)N3—C15—N4109.5 (3)
C4—C5—C6121.0 (4)N3—C15—C14125.2 (4)
C1—C6—N1132.7 (4)N4—C15—C14125.4 (4)
C1—C6—C5121.5 (4)C21—C16—C17122.0 (4)
N1—C6—C5105.7 (3)C21—C16—N4131.6 (4)
N1—C7—N2108.8 (3)C17—C16—N4106.4 (3)
N1—C7—C8125.3 (4)C18—C17—C16121.2 (4)
N2—C7—C8125.9 (4)C18—C17—N3132.8 (4)
C7—C8—C9114.7 (3)C16—C17—N3106.0 (3)
C7—C8—H8A108.6C19—C18—C17117.1 (4)
C9—C8—H8A108.6C19—C18—H18121.5
C7—C8—H8B108.6C17—C18—H18121.5
C9—C8—H8B108.6C18—C19—C20121.9 (4)
H8A—C8—H8B107.6C18—C19—H19119.0
C8—C9—C10110.8 (3)C20—C19—H19119.0
C8—C9—H9A109.5C21—C20—C19121.2 (4)
C10—C9—H9A109.5C21—C20—H20119.4
C8—C9—H9B109.5C19—C20—H20119.4
C10—C9—H9B109.5C20—C21—C16116.6 (4)
H9A—C9—H9B108.1C20—C21—H21121.7
C11—C10—C9114.6 (3)C16—C21—H21121.7
C11—C10—H10A108.6C7—N1—C6110.0 (3)
C9—C10—H10A108.6C7—N1—H1A125.0
C11—C10—H10B108.6C6—N1—H1A125.0
C9—C10—H10B108.6C7—N2—C5109.4 (3)
H10A—C10—H10B107.6C7—N2—H2A125.3
C10—C11—C12112.0 (3)C5—N2—H2A125.3
C10—C11—H11A109.2C15—N3—C17109.3 (3)
C12—C11—H11A109.2C15—N3—H3A125.3
C10—C11—H11B109.2C17—N3—H3A125.3
C12—C11—H11B109.2C15—N4—C16108.9 (3)
H11A—C11—H11B107.9C15—N4—H4A125.6
C13—C12—C11114.9 (3)C16—N4—H4A125.6
C13—C12—H12A108.5O1—N5—O2121.9 (4)
C11—C12—H12A108.5O1—N5—O3118.9 (4)
C13—C12—H12B108.5O2—N5—O3119.2 (4)
C11—C12—H12B108.5H1WA—O1W—H1WB104 (4)
C6—C1—C2—C30.4 (5)N4—C16—C17—N30.1 (4)
C1—C2—C3—C40.8 (6)C16—C17—C18—C191.0 (6)
C2—C3—C4—C50.6 (6)N3—C17—C18—C19179.2 (4)
C3—C4—C5—N2178.3 (4)C17—C18—C19—C200.1 (6)
C3—C4—C5—C60.2 (5)C18—C19—C20—C211.3 (7)
C2—C1—C6—N1178.1 (4)C19—C20—C21—C161.4 (6)
C2—C1—C6—C50.0 (5)C17—C16—C21—C200.3 (5)
N2—C5—C6—C1179.0 (3)N4—C16—C21—C20178.8 (4)
C4—C5—C6—C10.1 (5)N2—C7—N1—C61.5 (4)
N2—C5—C6—N10.4 (4)C8—C7—N1—C6177.9 (3)
C4—C5—C6—N1178.5 (3)C1—C6—N1—C7177.7 (4)
N1—C7—C8—C9104.1 (4)C5—C6—N1—C70.7 (4)
N2—C7—C8—C975.1 (5)N1—C7—N2—C51.8 (4)
C7—C8—C9—C10175.5 (3)C8—C7—N2—C5177.6 (3)
C8—C9—C10—C11174.1 (3)C4—C5—N2—C7177.4 (4)
C9—C10—C11—C12179.3 (3)C6—C5—N2—C71.3 (4)
C10—C11—C12—C13169.9 (3)N4—C15—N3—C170.8 (4)
C11—C12—C13—C14173.5 (3)C14—C15—N3—C17177.8 (3)
C12—C13—C14—C15167.8 (3)C18—C17—N3—C15179.2 (4)
C13—C14—C15—N3130.3 (4)C16—C17—N3—C150.5 (4)
C13—C14—C15—N451.3 (5)N3—C15—N4—C160.7 (4)
C21—C16—C17—C180.9 (6)C14—C15—N4—C16177.9 (3)
N4—C16—C17—C18179.7 (3)C21—C16—N4—C15179.7 (4)
C21—C16—C17—N3179.3 (3)C17—C16—N4—C150.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.862.223.066 (3)168
N2—H2A···O3i0.861.942.778 (4)164
N2—H2A···O1i0.862.533.243 (4)141
N2—H2A···N5i0.862.593.436 (5)168
N3—H3A···O2ii0.861.952.807 (4)177
N4—H4A···O1Wiii0.861.872.730 (4)173
O1W—H1WA···Cl10.93 (2)2.19 (2)3.088 (4)163 (4)
O1W—H1WB···Cl1iv0.83 (2)2.31 (3)3.099 (3)159 (5)
C10—H10A···Cg(3)v0.973.364.148 (4)140
C11—H11B···Cg(4)vi0.973.214.047 (4)146
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y1, z; (iii) x+1, y+1, z+1/2; (iv) x, y+1, z; (v) x+1/2, y, z+1/2; (vi) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC21H26N42+·Cl·NO3·H2O
Mr449.93
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)24.462 (10), 5.102 (2), 18.210 (7)
V3)2272.5 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.31 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.939, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
14275, 2086, 1619
Rint0.063
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.084, 1.03
No. of reflections2086
No. of parameters288
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.862.223.066 (3)167.8
N2—H2A···O3i0.861.942.778 (4)163.7
N2—H2A···O1i0.862.533.243 (4)140.9
N2—H2A···N5i0.862.593.436 (5)168.3
N3—H3A···O2ii0.861.952.807 (4)177.3
N4—H4A···O1Wiii0.861.872.730 (4)173.0
O1W—H1WA···Cl10.927 (19)2.19 (2)3.088 (4)163 (4)
O1W—H1WB···Cl1iv0.83 (2)2.31 (3)3.099 (3)159 (5)
C10—H10A···Cg(3)v0.97003.35904.148 (4)139.92
C11—H11B···Cg(4)vi0.97003.20564.047 (4)146.08
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y1, z; (iii) x+1, y+1, z+1/2; (iv) x, y+1, z; (v) x+1/2, y, z+1/2; (vi) x, y+1, z1/2.
 

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (No. 20662003), the International Collaborative Project of the Ministry of Science and Technology (No. 2007400108) and the Foundation of the Governor of Guizhou Province, China.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, A. I. & Arnold, A. P. (2000). Patent No. WO/2000/068232.  Google Scholar
First citationDay, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. Engl. 41, 275–277.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFreeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367–7370.  CSD CrossRef CAS Web of Science Google Scholar
First citationKim, J., Jung, I. S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540–541.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L. L. Y. & Joullié, M. M. (1957). J. Am. Chem. Soc. 79, 5706–5708.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds