supplementary materials


Acta Cryst. (2009). E65, m267-m268    [ doi:10.1107/S1600536809004334 ]

Hexakis(2-aminopyridinium) di-[mu]6-oxido-tetra-[mu]3-oxido-tetradeca-[mu]2-oxido-octaoxidodecavanadium(V) dihydrate

C. Yuan, L. Lu, M. Zhu, Q. Ma and Y. Wu

Abstract top

In the title compound, (C5H7N2)6[V10O28]·2H2O, the [V10O28]6- anion is generated by crystallographic inversion symmetry and each of the five vanadium centres adopts a distorted VO6 octahedral geometry. In the crystal structure, a network of N-H...O, N-H...(O,O) and O-H...O hydrogen bonds helps to establish the packing.

Comment top

Oxovanadates and peroxovanadium compounds are of great interest in biochemistry and medicine because of their diverse biological activites (Pacigová et al., 2007). Of them, decavanadates have showm high affinity for selected kinases and phosphorylase and has been used to facilitate crystallization of proteins. Herein, we report the structure of the title compound, (I), containing decavanadate anions, 2-aminopyridinium cations and water molecules (Fig. 1).

Compound (I) consists of a centrosymmetric [V10O28]6- polyanion, two distinct 2-aminopyridium cations and a water molecule (Fig. 1). The [V10O28]6- unit is constructed by ten VO6 octahedra connected with each other via edge-sharing oxygen atoms. The different coordination of the oxygen atoms in the molecule results in different V—O bond distances (Table 1). The V—O (one coordinated oxygen) double bond distances range from 1.590 (5) to 1.616 (4) Å; the V—O (two coordinated oxygen) single bond distances range from 1.676 (4) to 2.045 (4) Å; the V—O (three coordinated oxygen) single bond distances range from 1.921 (4) to 2.038 (4)Å and the V—O (six coordinated oxygen) single bond distances are even longer (2.097 (4) to 2.318 (4) Å). These V—O bond types are similar to those in related compounds (Gong et al., 2006).

A three-dimensional supramolecular hydrogen-bonding network is observed in the crystal structure of (I); details are given in Table 2. All the (C5H7N2)+ cations and water molecules are involved in hydrogen bonds with either terminal or bridging O atoms in the [V10O28]6- anion (Fig. 2).

Related literature top

For a related structure, see: Gong et al. (2006). For background to the biological activity of oxovanadates and peroxovanadium compounds, see: Pacigová et al. (2007).

Experimental top

A hot aqueous VOSO4 solution (1 mmol) was added dropwise to a stirred solution of 2-aminopyridine (1 mmol), which was dissolved in 20 ml of ethanol and refluxed for 4 h. Then the filtrate was kept open to slowly evaporate for a few days, depositiong yellow blocks of (I).

Refinement top

The H atoms were placed in geometrically idealized positions (C—H = 0.93Å, N—H =0.86Å, O—H = 0.85Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) with displacement ellipsoids drawn at the 30% probability level; H atoms and the water molecule are omitted for clarity.
[Figure 2] Fig. 2. The packing in (I), with hydrogen bonds indicated by dashed lines.
Hexakis(2-aminopyridinium) di-µ6-oxido-tetra-µ3-oxido- tetradeca-µ2-oxido-octaoxidodecavanadium(V) dihydrate top
Crystal data top
(C5H7N2)6[V10O28]·2H2OF(000) = 1560
Mr = 1564.19Dx = 2.048 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3889 reflections
a = 9.840 (3) Åθ = 2.2–27.0°
b = 18.180 (6) ŵ = 1.86 mm1
c = 14.299 (5) ÅT = 298 K
β = 97.416 (4)°Block, yellow
V = 2536.6 (14) Å30.40 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART 1K CCD
diffractometer
4341 independent reflections
Radiation source: fine-focus sealed tube3949 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.523, Tmax = 0.707k = 2118
9858 measured reflectionsl = 1612
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.29 w = 1/[σ2(Fo2) + (0.0095P)2 + 8.6635P]
where P = (Fo2 + 2Fc2)/3
4341 reflections(Δ/σ)max = 0.002
370 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
(C5H7N2)6[V10O28]·2H2OV = 2536.6 (14) Å3
Mr = 1564.19Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.840 (3) ŵ = 1.86 mm1
b = 18.180 (6) ÅT = 298 K
c = 14.299 (5) Å0.40 × 0.20 × 0.20 mm
β = 97.416 (4)°
Data collection top
Bruker SMART 1K CCD
diffractometer
4341 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3949 reflections with I > 2σ(I)
Tmin = 0.523, Tmax = 0.707Rint = 0.042
9858 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.53 e Å3
S = 1.29Δρmin = 0.45 e Å3
4341 reflectionsAbsolute structure: ?
370 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.92911 (10)1.06195 (6)0.82727 (7)0.0219 (3)
V20.93856 (11)0.85376 (6)0.99424 (7)0.0223 (3)
V31.01726 (11)0.90023 (6)0.79935 (8)0.0261 (3)
V40.84711 (10)1.01767 (6)1.02703 (7)0.0207 (3)
V50.72947 (11)0.93367 (6)0.84923 (8)0.0248 (3)
O10.9456 (4)0.9637 (2)0.9237 (3)0.0187 (9)
O20.8818 (4)1.1018 (2)0.9486 (3)0.0200 (9)
O30.7620 (4)1.0262 (2)0.7977 (3)0.0260 (10)
O40.6972 (4)0.9938 (2)0.9652 (3)0.0257 (10)
O51.1928 (4)0.9330 (2)0.8810 (3)0.0262 (10)
O61.0166 (4)0.8267 (2)0.8929 (3)0.0258 (10)
O70.9299 (4)1.1366 (2)0.7659 (3)0.0302 (10)
O81.0138 (4)0.9970 (2)0.7546 (3)0.0244 (10)
O90.9418 (5)0.7791 (2)1.0547 (3)0.0307 (11)
O100.7627 (4)0.8570 (2)0.9357 (3)0.0263 (10)
O111.0796 (5)0.8564 (3)0.7182 (3)0.0357 (11)
O121.1132 (4)1.0743 (2)0.9091 (3)0.0196 (9)
O130.5753 (5)0.9180 (3)0.8055 (3)0.0356 (11)
O140.8326 (4)0.8887 (2)0.7676 (3)0.0257 (10)
N10.4744 (8)0.6382 (4)0.4937 (6)0.075 (3)
H1A0.41510.60360.48250.090*
H1B0.55130.63570.47130.090*
N20.3280 (5)0.6980 (3)0.5806 (4)0.0319 (13)
H2A0.26850.66380.56650.038*
N30.8180 (6)0.7312 (3)0.7329 (4)0.0397 (15)
H3A0.87100.71890.69220.048*
H3B0.82590.77380.75910.048*
N40.7146 (5)0.6182 (3)0.7122 (4)0.0301 (13)
H4A0.77100.60770.67300.036*
C10.4480 (7)0.6944 (4)0.5460 (5)0.0361 (17)
C20.5431 (7)0.7514 (4)0.5687 (5)0.0387 (18)
H20.62740.75070.54590.046*
C30.5103 (8)0.8073 (4)0.6245 (6)0.0442 (19)
H30.57220.84560.63880.053*
C40.3861 (7)0.8082 (4)0.6606 (6)0.0424 (19)
H40.36510.84580.70030.051*
C50.2971 (7)0.7535 (4)0.6369 (5)0.0355 (17)
H50.21270.75380.65970.043*
C60.7244 (7)0.6848 (4)0.7549 (5)0.0291 (15)
C70.6326 (7)0.7000 (4)0.8184 (5)0.0418 (19)
H70.63620.74530.84890.050*
C80.5373 (7)0.6501 (5)0.8361 (5)0.045 (2)
H80.47770.66040.87980.054*
C90.5284 (8)0.5829 (5)0.7885 (6)0.048 (2)
H90.46070.54900.79790.057*
C100.6201 (7)0.5680 (4)0.7286 (5)0.0387 (18)
H100.61790.52260.69830.046*
N50.9609 (7)0.6459 (4)0.9265 (5)0.0518 (18)
H5A0.99580.64210.87460.062*
H5B0.97080.68590.95870.062*
N60.8778 (6)0.5280 (3)0.9057 (4)0.0324 (13)
H60.91380.52610.85400.039*
C110.8923 (7)0.5903 (4)0.9568 (5)0.0301 (15)
C120.8313 (8)0.5922 (4)1.0402 (5)0.0388 (18)
H120.83820.63441.07730.047*
C130.7629 (8)0.5333 (5)1.0668 (5)0.049 (2)
H130.72320.53511.12240.058*
C140.7509 (9)0.4700 (5)1.0124 (6)0.052 (2)
H140.70340.42931.03050.062*
C150.8107 (8)0.4690 (4)0.9313 (6)0.046 (2)
H150.80480.42700.89390.055*
O150.2400 (7)0.7219 (4)0.8838 (5)0.083 (2)
H15A0.18200.75670.87950.125*
H15B0.19170.69760.84090.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0254 (6)0.0199 (6)0.0200 (6)0.0005 (4)0.0013 (4)0.0038 (4)
V20.0268 (6)0.0164 (5)0.0237 (6)0.0012 (4)0.0038 (5)0.0001 (4)
V30.0308 (6)0.0240 (6)0.0242 (6)0.0007 (5)0.0068 (5)0.0047 (5)
V40.0211 (5)0.0193 (5)0.0223 (6)0.0022 (4)0.0047 (4)0.0013 (4)
V50.0229 (6)0.0272 (6)0.0238 (6)0.0033 (5)0.0008 (5)0.0018 (5)
O10.019 (2)0.018 (2)0.020 (2)0.0005 (16)0.0022 (17)0.0005 (17)
O20.022 (2)0.018 (2)0.021 (2)0.0030 (17)0.0057 (17)0.0021 (17)
O30.025 (2)0.028 (2)0.024 (2)0.0028 (18)0.0015 (19)0.0031 (19)
O40.019 (2)0.028 (2)0.031 (3)0.0003 (18)0.0050 (18)0.0031 (19)
O50.023 (2)0.027 (2)0.030 (3)0.0042 (18)0.0085 (19)0.0017 (19)
O60.034 (2)0.016 (2)0.029 (3)0.0033 (18)0.008 (2)0.0041 (18)
O70.032 (2)0.029 (3)0.030 (3)0.001 (2)0.003 (2)0.008 (2)
O80.032 (2)0.024 (2)0.018 (2)0.0013 (19)0.0040 (18)0.0012 (18)
O90.044 (3)0.022 (2)0.027 (3)0.005 (2)0.006 (2)0.0011 (19)
O100.030 (2)0.022 (2)0.028 (3)0.0047 (19)0.0069 (19)0.0013 (19)
O110.048 (3)0.033 (3)0.028 (3)0.001 (2)0.014 (2)0.005 (2)
O120.024 (2)0.017 (2)0.019 (2)0.0020 (17)0.0035 (17)0.0010 (17)
O130.031 (3)0.040 (3)0.033 (3)0.000 (2)0.006 (2)0.003 (2)
O140.032 (2)0.021 (2)0.023 (2)0.0006 (19)0.0014 (19)0.0029 (18)
N10.053 (4)0.072 (6)0.109 (7)0.026 (4)0.043 (4)0.056 (5)
N20.026 (3)0.032 (3)0.038 (4)0.011 (2)0.005 (3)0.013 (3)
N30.040 (3)0.034 (3)0.047 (4)0.002 (3)0.013 (3)0.013 (3)
N40.025 (3)0.036 (3)0.032 (3)0.002 (2)0.011 (2)0.002 (3)
C10.033 (4)0.040 (4)0.037 (4)0.005 (3)0.008 (3)0.009 (3)
C20.032 (4)0.049 (5)0.036 (4)0.018 (3)0.008 (3)0.002 (4)
C30.039 (4)0.033 (4)0.058 (5)0.017 (3)0.003 (4)0.001 (4)
C40.037 (4)0.031 (4)0.057 (5)0.001 (3)0.000 (4)0.012 (4)
C50.035 (4)0.031 (4)0.041 (4)0.002 (3)0.006 (3)0.002 (3)
C60.027 (3)0.033 (4)0.027 (4)0.005 (3)0.001 (3)0.000 (3)
C70.036 (4)0.048 (5)0.042 (5)0.012 (4)0.010 (4)0.014 (4)
C80.030 (4)0.067 (6)0.042 (5)0.001 (4)0.019 (3)0.010 (4)
C90.040 (4)0.049 (5)0.057 (5)0.013 (4)0.015 (4)0.010 (4)
C100.045 (4)0.032 (4)0.038 (4)0.008 (3)0.003 (4)0.014 (3)
N50.068 (5)0.035 (4)0.054 (5)0.001 (3)0.016 (4)0.005 (3)
N60.039 (3)0.037 (3)0.022 (3)0.008 (3)0.008 (3)0.008 (3)
C110.027 (3)0.037 (4)0.024 (4)0.011 (3)0.008 (3)0.005 (3)
C120.049 (5)0.044 (5)0.024 (4)0.016 (4)0.008 (3)0.006 (3)
C130.051 (5)0.066 (6)0.033 (5)0.007 (4)0.019 (4)0.001 (4)
C140.056 (5)0.051 (5)0.052 (5)0.009 (4)0.021 (4)0.003 (4)
C150.056 (5)0.036 (4)0.047 (5)0.004 (4)0.009 (4)0.014 (4)
O150.062 (4)0.098 (6)0.086 (5)0.022 (4)0.004 (4)0.013 (4)
Geometric parameters (Å, °) top
V1—O71.616 (4)N2—H2A0.8600
V1—O31.767 (4)N3—C61.316 (9)
V1—O81.842 (4)N3—H3A0.8600
V1—O21.991 (4)N3—H3B0.8599
V1—O122.038 (4)N4—C101.345 (9)
V1—O12.250 (4)N4—C61.353 (8)
V2—O91.608 (4)N4—H4A0.8599
V2—O61.794 (4)C1—C21.405 (9)
V2—O101.823 (4)C2—C31.357 (11)
V2—O12i2.015 (4)C2—H20.9299
V2—O2i2.017 (4)C3—C41.387 (11)
V2—O12.243 (4)C3—H30.9300
V3—O111.594 (4)C4—C51.339 (10)
V3—O141.827 (4)C4—H40.9300
V3—O81.871 (4)C5—H50.9300
V3—O61.891 (4)C6—C71.389 (9)
V3—O52.045 (4)C7—C81.352 (11)
V3—O12.305 (4)C7—H70.9300
V4—O41.676 (4)C8—C91.396 (11)
V4—O5i1.680 (4)C8—H80.9300
V4—O12i1.921 (4)C9—C101.349 (10)
V4—O21.953 (4)C9—H90.9300
V4—O1i2.097 (4)C10—H100.9300
V4—O12.111 (4)N5—C111.319 (9)
V5—O131.590 (5)N5—H5A0.8600
V5—O141.835 (4)N5—H5B0.8601
V5—O101.864 (4)N6—C151.335 (9)
V5—O31.881 (4)N6—C111.346 (8)
V5—O42.045 (4)N6—H60.8600
V5—O12.318 (4)C11—C121.403 (9)
O1—V4i2.097 (4)C12—C131.346 (11)
O2—V2i2.017 (4)C12—H120.9300
O5—V4i1.680 (4)C13—C141.386 (11)
O12—V4i1.921 (4)C13—H130.9300
O12—V2i2.015 (4)C14—C151.366 (11)
N1—C11.312 (9)C14—H140.9300
N1—H1A0.8599C15—H150.9300
N1—H1B0.8600O15—H15A0.8499
N2—C11.339 (8)O15—H15B0.8496
N2—C51.350 (8)
O7—V1—O3104.4 (2)V1—O1—V385.95 (14)
O7—V1—O8101.4 (2)V4i—O1—V5170.8 (2)
O3—V1—O895.96 (19)V4—O1—V587.36 (14)
O7—V1—O2100.7 (2)V2—O1—V585.25 (13)
O3—V1—O291.58 (18)V1—O1—V585.16 (14)
O8—V1—O2154.05 (18)V3—O1—V583.19 (13)
O7—V1—O1298.8 (2)V4—O2—V1107.04 (19)
O3—V1—O12155.27 (18)V4—O2—V2i106.87 (19)
O8—V1—O1287.81 (17)V1—O2—V2i101.98 (17)
O2—V1—O1275.49 (16)V1—O3—V5115.8 (2)
O7—V1—O1173.8 (2)V4—O4—V5110.3 (2)
O3—V1—O181.16 (17)V4i—O5—V3109.7 (2)
O8—V1—O180.48 (16)V2—O6—V3114.8 (2)
O2—V1—O176.19 (15)V1—O8—V3113.5 (2)
O12—V1—O175.36 (15)V2—O10—V5113.8 (2)
O9—V2—O6102.8 (2)V4i—O12—V2i107.03 (18)
O9—V2—O10103.1 (2)V4i—O12—V1106.72 (18)
O6—V2—O1096.7 (2)V2i—O12—V1100.42 (17)
O9—V2—O12i99.71 (19)V3—O14—V5113.9 (2)
O6—V2—O12i154.72 (18)C1—N1—H1A119.8
O10—V2—O12i89.15 (18)C1—N1—H1B120.1
O9—V2—O2i99.5 (2)H1A—N1—H1B120.0
O6—V2—O2i89.59 (18)C1—N2—C5122.3 (6)
O10—V2—O2i154.54 (18)C1—N2—H2A119.0
O12i—V2—O2i75.43 (16)C5—N2—H2A118.7
O9—V2—O1173.9 (2)C6—N3—H3A120.0
O6—V2—O180.77 (17)C6—N3—H3B120.0
O10—V2—O181.23 (16)H3A—N3—H3B120.0
O12i—V2—O175.85 (15)C10—N4—C6122.6 (6)
O2i—V2—O175.47 (15)C10—N4—H4A118.8
O11—V3—O14103.0 (2)C6—N4—H4A118.6
O11—V3—O8102.3 (2)N1—C1—N2119.8 (7)
O14—V3—O892.79 (19)N1—C1—C2122.0 (7)
O11—V3—O6101.5 (2)N2—C1—C2118.1 (6)
O14—V3—O690.05 (19)C3—C2—C1119.1 (7)
O8—V3—O6154.81 (18)C3—C2—H2120.5
O11—V3—O5100.7 (2)C1—C2—H2120.4
O14—V3—O5156.20 (18)C2—C3—C4121.0 (7)
O8—V3—O584.18 (18)C2—C3—H3119.4
O6—V3—O583.21 (18)C4—C3—H3119.6
O11—V3—O1175.1 (2)C5—C4—C3118.5 (7)
O14—V3—O181.71 (16)C5—C4—H4120.8
O8—V3—O178.46 (16)C3—C4—H4120.8
O6—V3—O177.20 (16)C4—C5—N2121.0 (7)
O5—V3—O174.55 (15)C4—C5—H5119.5
O4—V4—O5i105.8 (2)N2—C5—H5119.5
O4—V4—O12i97.83 (19)N3—C6—N4118.4 (6)
O5i—V4—O12i98.45 (19)N3—C6—C7124.3 (7)
O4—V4—O296.17 (19)N4—C6—C7117.3 (6)
O5i—V4—O296.12 (19)C8—C7—C6120.9 (7)
O12i—V4—O2156.20 (17)C8—C7—H7119.4
O4—V4—O1i166.03 (18)C6—C7—H7119.7
O5i—V4—O1i88.08 (18)C7—C8—C9119.9 (7)
O12i—V4—O1i81.50 (16)C7—C8—H8120.3
O2—V4—O1i80.29 (16)C9—C8—H8119.9
O4—V4—O187.89 (18)C10—C9—C8118.7 (7)
O5i—V4—O1166.22 (19)C10—C9—H9120.7
O12i—V4—O181.02 (16)C8—C9—H9120.6
O2—V4—O180.36 (16)N4—C10—C9120.5 (7)
O1i—V4—O178.21 (17)N4—C10—H10119.7
O13—V5—O14104.4 (2)C9—C10—H10119.7
O13—V5—O10101.8 (2)C11—N5—H5A120.0
O14—V5—O1091.43 (19)C11—N5—H5B120.0
O13—V5—O3102.0 (2)H5A—N5—H5B120.0
O14—V5—O390.73 (19)C15—N6—C11123.3 (6)
O10—V5—O3154.79 (19)C15—N6—H6118.4
O13—V5—O4100.0 (2)C11—N6—H6118.3
O14—V5—O4155.60 (18)N5—C11—N6119.3 (6)
O10—V5—O483.94 (18)N5—C11—C12123.6 (7)
O3—V5—O483.79 (18)N6—C11—C12117.1 (7)
O13—V5—O1174.4 (2)C13—C12—C11120.4 (7)
O14—V5—O181.21 (17)C13—C12—H12119.8
O10—V5—O178.41 (16)C11—C12—H12119.8
O3—V5—O177.12 (16)C12—C13—C14120.8 (7)
O4—V5—O174.39 (15)C12—C13—H13119.6
V4i—O1—V4101.79 (16)C14—C13—H13119.6
V4i—O1—V294.50 (15)C15—C14—C13118.2 (8)
V4—O1—V293.22 (15)C15—C14—H14120.9
V4i—O1—V193.87 (15)C13—C14—H14120.9
V4—O1—V193.23 (15)N6—C15—C14120.3 (7)
V2—O1—V1168.2 (2)N6—C15—H15119.9
V4i—O1—V387.65 (14)C14—C15—H15119.9
V4—O1—V3170.6 (2)H15A—O15—H15B91.4
V2—O1—V386.07 (14)
Symmetry codes: (i) −x+2, −y+2, −z+2.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.862.443.217 (9)150
N1—H1A···O5iii0.862.553.286 (8)144
N1—H1B···O10iv0.862.213.058 (8)169
N2—H2A···O2ii0.861.852.697 (7)168
N3—H3A···O9iv0.862.172.969 (7)155
N3—H3A···O7v0.862.483.017 (7)122
N3—H3B···O140.862.092.908 (7)158
N4—H4A···O12v0.861.842.698 (6)174
N5—H5A···O7v0.862.233.085 (8)175
N5—H5B···O90.862.223.057 (8)164
N6—H6···O8v0.861.872.709 (7)166
O15—H15A···O6vi0.852.092.926 (8)166
O15—H15B···O7ii0.852.132.977 (8)180
Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) x−1, −y+3/2, z−1/2; (iv) x, −y+3/2, z−1/2; (v) −x+2, y−1/2, −z+3/2; (vi) x−1, y, z.
Table 1
Selected geometric parameters (Å)
top
V1—O71.616 (4)V3—O61.891 (4)
V1—O31.767 (4)V3—O52.045 (4)
V1—O81.842 (4)V3—O12.305 (4)
V1—O21.991 (4)V4—O41.676 (4)
V1—O122.038 (4)V4—O5i1.680 (4)
V1—O12.250 (4)V4—O12i1.921 (4)
V2—O91.608 (4)V4—O21.953 (4)
V2—O61.794 (4)V4—O1i2.097 (4)
V2—O101.823 (4)V4—O12.111 (4)
V2—O12i2.015 (4)V5—O131.590 (5)
V2—O2i2.017 (4)V5—O141.835 (4)
V2—O12.243 (4)V5—O101.864 (4)
V3—O111.594 (4)V5—O31.881 (4)
V3—O141.827 (4)V5—O42.045 (4)
V3—O81.871 (4)V5—O12.318 (4)
Symmetry codes: (i) −x+2, −y+2, −z+2.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.862.443.217 (9)150
N1—H1A···O5iii0.862.553.286 (8)144
N1—H1B···O10iv0.862.213.058 (8)169
N2—H2A···O2ii0.861.852.697 (7)168
N3—H3A···O9iv0.862.172.969 (7)155
N3—H3A···O7v0.862.483.017 (7)122
N3—H3B···O140.862.092.908 (7)158
N4—H4A···O12v0.861.842.698 (6)174
N5—H5A···O7v0.862.233.085 (8)175
N5—H5B···O90.862.223.057 (8)164
N6—H6···O8v0.861.872.709 (7)166
O15—H15A···O6vi0.852.092.926 (8)166
O15—H15B···O7ii0.852.132.977 (8)180
Symmetry codes: (ii) −x+1, y−1/2, −z+3/2; (iii) x−1, −y+3/2, z−1/2; (iv) x, −y+3/2, z−1/2; (v) −x+2, y−1/2, −z+3/2; (vi) x−1, y, z.
Acknowledgements top

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2008.

references
References top

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Gong, Y., Hu, C., Li, H., Tang, W., Huang, K. & Hou, W. B. (2006). J. Mol. Struct. 784, 228–238.

Pacigová, S., Rakovský, E., Sivák, M. & Žák, Z. (2007). Acta Cryst. C63, m419–m422.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.