metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­chloridobis[μ-1-(4-pyridylmeth­yl)-1H-1,2,4-triazole]copper(II)]

aFaculty of Pharmacy Fujian Medical University, Fuzhou, Fujian 350004, People's Republic of China
*Correspondence e-mail: wangjian7777@msn.com

(Received 12 January 2009; accepted 22 February 2009; online 28 February 2009)

The title coordination polymer, [CuCl2(C8H8N4)2]n, arose from a layer-separated diffusion synthesis at room temperature. The Cu atom (site symmetry [\overline{1}]) is coordinated by two chloride ions and four N atoms (two from triazole rings and two from pyridyl rings) in a distorted trans-CuCl2N4 octa­hedral arrangement. The bridging 1-(4-pyridylmeth­yl)-1H-1,2,4-triazole ligands [dihedral angle between the triazole and pyridine rings = 68.08 (8)°] result in a two-dimensional 44 sheet structure in the crystal.

Related literature

For background on the synthesis and structures of coordination polymers, see: Carlucci et al. (2000[Carlucci, L., Ciani, G., Moret, M., Proserpio, D. M. & Rizzato, S. (2000). Angew. Chem. Int. Ed. 39, 1506-1510.], 2004[Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). Chem. Commun. 4, 380-386.]); Effendy et al. (2003[Effendy, Marchetti, F. & Pettinari, C. (2003). Inorg. Chem. 42, 112-117.]); Evans et al. (1999[Evans, O. R., Xiong, R. G., Wang, Z. Y., Wong, G. K. & Lin, W. B. (1999). Angew. Chem. Int. Ed. 38, 536-538.]); Huang et al. (2006[Huang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211-217. ]); Liu et al. (2005[Liu, Z., Liu, P., Chen, Y., Wang, J. & Huang, M. H. (2005). Inorg. Chem. Commun. 8, 212-215. ]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Ranford et al. (1999[Ranford, J. D., Vittal, J. J. & Wu, D. (1999). Angew. Chem. Int. Ed. 38, 3498-3501.]); Sharma & Rogers (1999[Sharma, C. V. K. & Rogers, R. D. (1999). Chem. Commun. 1, 83-84.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C8H8N4)2]

  • Mr = 454.81

  • Monoclinic, P 21 /n

  • a = 7.5112 (5) Å

  • b = 16.0876 (9) Å

  • c = 8.3390 (6) Å

  • β = 116.469 (2)°

  • V = 902.03 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Siemens SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.88, Tmax = 1.00 (expected range = 0.700–0.795)

  • 6345 measured reflections

  • 2067 independent reflections

  • 1864 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.01

  • 2067 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N3 2.034 (2)
Cu1—N4i 2.087 (2)
Cu1—Cl1 2.7167 (7)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the research of supramolecular chemistry, a great interest has recently been focused on the crystal engineering of coordination frameworks due to their intriguing architectures, new topologies, intertwining phenomena and potential applications in microelectronics, nonlinear optics, ion exchange, molecular selection, molecular separation and recognition (Carlucci et al., 2000; Evans et al., 1999; Ranford et al., 1999; Sharma et al., 1999). The structural motifs of coordination polymers rest on several factors, but the choice of appropriate ligands is no doubt the key factor because it has an obvious influence on the topologies of coordination polymers and behavior of the molecules. Some flexible ligands, such as bis(triazole), bis(benzotriazole) and bis(pyridyl) alkyl, have been utilized to construct coordination polymers with aesthetics and useful properties (Moulton et al., 2001; Carlucci et al., 2004; Effendy et al., 2003), but the symmetry greatly limits the novelty and variety of the configuration.

Recently, our group have focused on the design and synthesis of some flexible unsymmetric ligands(Liu et al., 2005; Huang et al., 2006), and we have got a new heterocyclic ligand pyta [pyta = N-(4-pyridylmethyl)(1,2,4-triazole)]. In order to explore the architectural styles and other chemistry of this kind of ligands, we selected copper chloride as representative subject for stereoregular coordination. Among our attempts, a new polymer, namely [Cu(pyta)2Cl2]n,(I), was obtained as crystals suitable for single-crystal X-ray analysis.

The crystal structure of (I) is illustrated in Fig.1. The asymmetric unit contains one copper atom lying on an inversion centre, one chloride ion donor and one pyta bridging group. The Cu(II) center lies in an octahedral [CuN4Cl2] environment with the axial positions occupied by two chloride ions and the equatorial positions occupied by two trans triazolium nitrogen atoms and two trans pyridyl nitrogen atoms, each of which respectively belongs to four different pyta ligands. The bond angles about the Cu(1) octahedron range from 87.20 (8)° to 92.80 (8)° and deviate slightly from those of a perfect octahedron. The Cu—N bond lengths are in the range 2.034 (2) - 2.087 (2) Å. Due to the existence of the CH2 spacer between the triazole and the pyridyl ring, sufficient flexibility make it possible for pyta to be twisted to meet the requirment of coordination geometries of Cu(II) center with the N(1)—C(3)—C(4) torsion angle 115.6 (2)° and the dihedral angle 68.08 (8)°.

The polymer results in an infinite two-dimensional rhombohedral sheet containing 36-membered sandglass rings, as shown in Fig.2. The sp-3 configuration of C(3) forces the pyta ligand to be non-linear, generating the nonlinear grid sides and thereby the sandglass grids. Every complementary four [Cu4(pyta)4] grids are joined together by sharing the copper apices to give the 44 two-dimensional structure with a side length of 10.495 Å and a diagonal measurement of about 13.483 × 16.088 Å.

Related literature top

For background on the synthesis and structures of coordination polymers, see: Carlucci et al. (2000, 2004); Effendy et al. (2003); Evans et al. (1999); Huang et al. (2006); Liu et al. (2005); Moulton & Zaworotko (2001); Ranford et al. (1999); Sharma & Rogers (1999).

Experimental top

A solution of pyta (0.016 g, 0.10 mmol) in MeOH (5 ml) was carefully layered on a solution of CuCl2.2H2O (0.017 g, 0.10 mmol) in H2O (5 ml). Diffusion between the two phases over about twenty days produced blue prisms of (I) (yield 0.013 g, 28.6%). Anal. Calcd for C16H16N8Cl2Cu (%): C, 32.16; H, 2.74; N, 19.02. Found: C, 32.78; H, 2.45; N, 19.30. IR (KBr, cm-1): 3700–3500 (s), 2374 (m), 1488 (m), 1425 (s), 1409 (s), 1273 (m), 1185 (m), 1169 (m), 1025 (s), 1011 (m), 783 (m), 659 (w), 452 (w).

Refinement top

The hydrogen atom positions were generated geometrically and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing 50% probability displacement ellipsoids, expanded to show the Cu geometry. Symmetry codes: (i) 1–x, –y, 1–z; (ii) 1/2–x, y–1/2, 3/2–z; (iii) x+1/2, 1/2–y, z–1/2; (iv) 1/2–x, 1/2+y, 3/2–z.
[Figure 2] Fig. 2. The two-dimensional extended structure of (I), constructed of rhombus-shaped grids.
Poly[dichloridobis[µ-1-(4-pyridylmethyl)-1H-1,2,4-triazole]copper(II)] top
Crystal data top
[CuCl2(C8H8N4)2]F(000) = 462
Mr = 454.81Dx = 1.674 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2134 reflections
a = 7.5112 (5) Åθ = 2.7–27.5°
b = 16.0876 (9) ŵ = 1.53 mm1
c = 8.3390 (6) ÅT = 293 K
β = 116.469 (2)°Prism, blue
V = 902.03 (10) Å30.30 × 0.20 × 0.15 mm
Z = 2
Data collection top
Siemens SMART
diffractometer
2067 independent reflections
Radiation source: fine-focus sealed tube1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 96
Tmin = 0.88, Tmax = 1.00k = 2016
6345 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0347P)2 + 1.5333P]
where P = (Fo2 + 2Fc2)/3
2067 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[CuCl2(C8H8N4)2]V = 902.03 (10) Å3
Mr = 454.81Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.5112 (5) ŵ = 1.53 mm1
b = 16.0876 (9) ÅT = 293 K
c = 8.3390 (6) Å0.30 × 0.20 × 0.15 mm
β = 116.469 (2)°
Data collection top
Siemens SMART
diffractometer
2067 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1864 reflections with I > 2σ(I)
Tmin = 0.88, Tmax = 1.00Rint = 0.017
6345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.01Δρmax = 0.81 e Å3
2067 reflectionsΔρmin = 0.56 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.50000.02592 (13)
Cl10.10912 (10)0.03685 (4)0.30125 (10)0.03818 (18)
C10.6294 (4)0.07131 (16)0.8758 (4)0.0365 (6)
H1A0.76340.06660.90320.044*
C20.3175 (4)0.06044 (15)0.7390 (4)0.0307 (5)
H2A0.18810.04820.65550.037*
C30.2381 (5)0.12190 (16)0.9732 (4)0.0355 (6)
H3A0.30140.10571.09840.043*
H3B0.11590.09020.91470.043*
C40.1852 (4)0.21295 (15)0.9625 (3)0.0291 (5)
C50.2897 (4)0.27713 (16)0.9343 (4)0.0358 (6)
H5A0.39870.26590.91300.043*
C60.2312 (4)0.35851 (16)0.9379 (4)0.0337 (6)
H6A0.30500.40110.92110.040*
C70.0305 (4)0.31581 (17)0.9856 (4)0.0403 (7)
H7A0.14390.32840.99910.048*
C80.0212 (4)0.23381 (17)0.9888 (5)0.0419 (7)
H8A0.05340.19251.00840.050*
N10.3680 (4)0.09900 (13)0.8939 (3)0.0322 (5)
N20.5650 (4)0.10725 (15)0.9833 (3)0.0378 (5)
N30.4802 (3)0.04199 (13)0.7215 (3)0.0300 (5)
N40.0740 (3)0.37867 (12)0.9642 (3)0.0279 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0367 (2)0.0165 (2)0.0367 (2)0.00556 (16)0.0272 (2)0.00450 (16)
Cl10.0402 (4)0.0381 (4)0.0442 (4)0.0050 (3)0.0260 (3)0.0017 (3)
C10.0337 (14)0.0291 (13)0.0474 (16)0.0011 (11)0.0189 (12)0.0053 (11)
C20.0349 (13)0.0266 (12)0.0366 (13)0.0025 (10)0.0214 (11)0.0046 (10)
C30.0505 (16)0.0232 (12)0.0460 (16)0.0040 (11)0.0334 (14)0.0026 (11)
C40.0387 (14)0.0217 (11)0.0313 (13)0.0030 (10)0.0196 (11)0.0027 (9)
C50.0411 (15)0.0286 (12)0.0522 (17)0.0053 (11)0.0337 (14)0.0005 (11)
C60.0393 (14)0.0264 (12)0.0478 (16)0.0000 (11)0.0305 (13)0.0015 (11)
C70.0376 (15)0.0259 (13)0.071 (2)0.0007 (11)0.0364 (15)0.0021 (13)
C80.0444 (16)0.0223 (12)0.073 (2)0.0047 (11)0.0383 (16)0.0034 (12)
N10.0439 (13)0.0221 (10)0.0374 (12)0.0032 (9)0.0243 (11)0.0023 (8)
N20.0409 (13)0.0329 (12)0.0409 (13)0.0017 (10)0.0195 (11)0.0107 (10)
N30.0321 (11)0.0252 (10)0.0396 (12)0.0018 (8)0.0223 (10)0.0039 (9)
N40.0330 (11)0.0195 (9)0.0375 (11)0.0024 (8)0.0212 (10)0.0018 (8)
Geometric parameters (Å, º) top
Cu1—N32.034 (2)C3—H3A0.9700
Cu1—N3i2.034 (2)C3—H3B0.9700
Cu1—N4ii2.087 (2)C4—C51.379 (4)
Cu1—N4iii2.087 (2)C4—C81.386 (4)
Cu1—Cl12.7167 (7)C5—C61.385 (4)
Cu1—Cl1i2.7167 (7)C5—H5A0.9300
C1—N21.327 (4)C6—N41.334 (3)
C1—N31.359 (4)C6—H6A0.9300
C1—H1A0.9300C7—N41.340 (3)
C2—N11.327 (3)C7—C81.372 (4)
C2—N31.327 (3)C7—H7A0.9300
C2—H2A0.9300C8—H8A0.9300
C3—N11.450 (3)N1—N21.334 (3)
C3—C41.510 (3)N4—Cu1iv2.0870 (19)
N3—Cu1—N3i180.0H3A—C3—H3B107.4
N3—Cu1—N4ii92.80 (8)C5—C4—C8117.3 (2)
N3i—Cu1—N4ii87.20 (8)C5—C4—C3125.6 (2)
N3—Cu1—N4iii87.20 (8)C8—C4—C3117.0 (2)
N3i—Cu1—N4iii92.80 (8)C4—C5—C6119.6 (2)
N4ii—Cu1—N4iii180.0C4—C5—H5A120.2
N3—Cu1—Cl189.14 (6)C6—C5—H5A120.2
N3i—Cu1—Cl190.86 (6)N4—C6—C5123.1 (2)
N4ii—Cu1—Cl190.41 (6)N4—C6—H6A118.5
N4iii—Cu1—Cl189.59 (6)C5—C6—H6A118.5
N3—Cu1—Cl1i90.86 (6)N4—C7—C8123.4 (2)
N3i—Cu1—Cl1i89.14 (6)N4—C7—H7A118.3
N4ii—Cu1—Cl1i89.59 (6)C8—C7—H7A118.3
N4iii—Cu1—Cl1i90.41 (6)C7—C8—C4119.6 (2)
Cl1—Cu1—Cl1i180.0C7—C8—H8A120.2
N2—C1—N3113.3 (2)C4—C8—H8A120.2
N2—C1—H1A123.4C2—N1—N2110.8 (2)
N3—C1—H1A123.4C2—N1—C3127.2 (2)
N1—C2—N3109.5 (2)N2—N1—C3121.6 (2)
N1—C2—H2A125.3C1—N2—N1103.1 (2)
N3—C2—H2A125.3C2—N3—C1103.3 (2)
N1—C3—C4115.6 (2)C2—N3—Cu1128.15 (19)
N1—C3—H3A108.4C1—N3—Cu1127.69 (18)
C4—C3—H3A108.4C6—N4—C7116.9 (2)
N1—C3—H3B108.4C6—N4—Cu1iv124.24 (17)
C4—C3—H3B108.4C7—N4—Cu1iv118.55 (17)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CuCl2(C8H8N4)2]
Mr454.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.5112 (5), 16.0876 (9), 8.3390 (6)
β (°) 116.469 (2)
V3)902.03 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerSiemens SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.88, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
6345, 2067, 1864
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.01
No. of reflections2067
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.56

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N32.034 (2)Cu1—Cl12.7167 (7)
Cu1—N4i2.087 (2)
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

References

First citationCarlucci, L., Ciani, G., Moret, M., Proserpio, D. M. & Rizzato, S. (2000). Angew. Chem. Int. Ed. 39, 1506–1510.  Web of Science CrossRef CAS Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2004). Chem. Commun. 4, 380–386.  Web of Science CSD CrossRef Google Scholar
First citationEffendy, Marchetti, F. & Pettinari, C. (2003). Inorg. Chem. 42, 112–117.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEvans, O. R., Xiong, R. G., Wang, Z. Y., Wong, G. K. & Lin, W. B. (1999). Angew. Chem. Int. Ed. 38, 536–538.  CrossRef CAS Google Scholar
First citationHuang, M., Liu, P., Chen, Y., Wang, J. & Liu, Z. (2006). J. Mol. Struct. 788, 211–217.   Web of Science CrossRef CAS Google Scholar
First citationLiu, Z., Liu, P., Chen, Y., Wang, J. & Huang, M. H. (2005). Inorg. Chem. Commun. 8, 212–215.   Web of Science CSD CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRanford, J. D., Vittal, J. J. & Wu, D. (1999). Angew. Chem. Int. Ed. 38, 3498–3501.  CrossRef CAS Google Scholar
First citationSharma, C. V. K. & Rogers, R. D. (1999). Chem. Commun. 1, 83–84.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds