metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m335-m336

Bis[di­chlorido(5,5′-di­methyl-2,2′-bi­pyridine-κ2N,N′)gold(III)] tetra­chlorido­aurate(III) di­chloridooaurate(I)

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry Department, Shahid Beheshti University, GC, Tehran, Iran, cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, and dDepartment of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 21 January 2009; accepted 21 February 2009; online 28 February 2009)

The title compound, [AuIIICl2(C12H12N2)]2[AuIIICl4][AuICl2], contains three distinct types of Au atom. In the cation, the AuIII atom is four-coordinated in a distorted square-planar arrangement by an N,N′-bidentate 5,5′-dimethyl-2,2′-bipyridine ligand and two terminal Cl atoms. In the [AuCl4] anion, the centrosymmetric AuIII atom has a square-planar coordination. The centrosymmetric [AuCl2] anion is linear. Intra- and inter­molecular C—H⋯Cl hydrogen bonds help to establish the conformation and packing.

Related literature

For related stuctures, see: Abbate et al. (2000[Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1-5.]); Adams & Strähle (1982[Adams, H. N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65-80.]); Ahmadi, Amani & Khavasi (2008[Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1156-m1157.]); Ahmadi, Dehghan, Amani & Khavasi (2008[Ahmadi, R., Dehghan, L., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1237.]); Bjernemose et al. (2004[Bjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719-m1721.]); Hayoun et al. (2006[Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120-6122.]); Hollis & Lippard (1983[Hollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293-4299.]); McInnes et al. (1995[McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023-2025.]); Yıldırım et al. (2008[Yıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V., McKee, V., Abedi, A. & Khavasi, H. R. (2008). Acta Cryst. E64, m1189-m1190.]).

[Scheme 1]

Experimental

Crystal data
  • [AuCl2(C12H12N2)]2[AuCl4][AuCl2]

  • Mr = 1510.86

  • Triclinic, [P \overline 1]

  • a = 9.0698 (4) Å

  • b = 10.0886 (4) Å

  • c = 11.1678 (5) Å

  • α = 91.155 (4)°

  • β = 108.148 (4)°

  • γ = 111.344 (3)°

  • V = 894.09 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 17.13 mm−1

  • T = 295 K

  • 0.41 × 0.28 × 0.08 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.054, Tmax = 0.341

  • 9898 measured reflections

  • 3651 independent reflections

  • 3193 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.05

  • 3651 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 1.64 e Å−3

  • Δρmin = −1.91 e Å−3

Table 1
Selected bond lengths (Å)

Au1—N1 2.028 (9)
Au1—N2 2.027 (7)
Au1—Cl1 2.252 (3)
Au1—Cl2 2.262 (3)
Au2—Cl3 2.246 (5)
Au2—Cl4 2.261 (3)
Au3—Cl5 2.248 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.93 2.59 3.203 (11) 124
C8—H8⋯Cl2i 0.93 2.75 3.666 (12) 169
C11—H11⋯Cl2 0.93 2.64 3.233 (11) 122
Symmetry code: (i) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the synthesis and crystal structure of the [Au(dtbpy)Cl2][AuCl4].CH3CN, (II), (Yıldırım et al., 2008) [where dtbpy is 4,4'-di-tert-butyl-2,2'-bipyridine]. There are several AuIII complexes, with formula, [AuCl2 (N—N)]X, such as [AuCl2(bipy)][BF4], (III), (McInnes et al., 1995), [AuCl2(bipy)](NO3), (IV), (Bjernemose et al., 2004), [AuCl2(bipy)][AuBr4], (V), (Hayoun et al., 2006), [AuCl2(dmphen)][AuCl4], (VI), (Ahmadi, Amani et al., 2008) and [AuCl2 (phen)]Cl.H2O, (VII), (Abbate et al., 2000) [where bipy is 2,2'-bipyridine, dmphen is 4,7-diphenyl-1,10-phenanthroline and phen is 1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods. Two AuIII complexes with formula, [AuCl2L2]X, [AuCl2(py)2][AuCl4], (VIII), and [AuCl2(py)2]Cl.H2O, (IX), (Adams & Strähle 1982) [py is pyridine] and two mixed-valence AuI—AuIII complexes, [Au(terpy)Cl]2[AuCl2]3[AuCl4], (X), (Hollis & Lippard, 1983) and [Au(dmpy)2][AuCl4], (XI), (Ahmadi, Dehghan et al., 2008) [where terpy is 2,2',2''-terpyridine and dmpy is 2,6-dimethylpyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound (I).

In the asymmetric unit of the title compound (I), (Fig. 1), there are one cation and two half-anions. In the cation, the AuIII atom is four-coordinated in a distorted square-planar configuration by two N atoms from the ligand and two terminal Cl atoms. In the anion AuCl4, the AuIII atom has a square-planar coordination. The anion AuCl2 is linear. In the cation, the Au—Cl and Au—N bond lengths and angles (Table 1) are in good agreement with the corresponding values in (II), (III), (IV), (V), (VI), (VII), (VIII), (IX), (X) and, (XI). In the anion, the Au—Cl bond lengths and angles (Table 1) are normal.

Intra and intermolecular C—H···Cl hydrogen bonding interactions (Table 2) stabilize the molecular conformation and the packing arrangement (Fig. 2).

Related literature top

For related stuctures, see: Abbate et al. (2000); Adams & Strähle (1982); Ahmadi, Amani & Khavasi (2008); Ahmadi, Dehghan, Amani & Khavasi (2008); Bjernemose et al. (2004); Hayoun et al. (2006); Hollis & Lippard (1983); McInnes et al. (1995); Yıldırım et al. (2008).

Experimental top

A solution of 5,5'-dimethyl-2,2'-bipyridine (0.20 g, 1.09 mmol) in ethanol (20 ml) was added to a solution of HAuCl3.3H2O, (0.37 g, 1.09 mmol) in acetonitrile (20 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of (I) were isolated (yield 0.28 g, 72.8%; m.p. 553 K).

Refinement top

All H-atoms were placed in calculated positions with C—H = 0.93 Å and C—H 0.96 Å, and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq (ring C) and Uiso(H) = 1.5Ueq (methyl C). In the final Fourier map, the highest and deepest peaks were located 0.91 and 0.81 Å from atom Au1, respectively.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry code suffixes: (a) –x, –y, –z; (b) 2–x, 1–y, 1–z.
[Figure 2] Fig. 2. A general view of the packing and hydrogen bonding interactions in (I).
Bis[dichlorido(5,5'-dimethyl-2,2'-bipyridine-κ2N,N')gold(III)] tetrachloridoaurate(III) dichloridooaurate(I) top
Crystal data top
[AuCl2(C12H12N2)]2[AuCl4][AuCl2]Z = 1
Mr = 1510.86F(000) = 682
Triclinic, P1Dx = 2.806 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0698 (4) ÅCell parameters from 16778 reflections
b = 10.0886 (4) Åθ = 1.9–28.0°
c = 11.1678 (5) ŵ = 17.13 mm1
α = 91.155 (4)°T = 295 K
β = 108.148 (4)°Prism, yellow
γ = 111.344 (3)°0.41 × 0.28 × 0.08 mm
V = 894.09 (7) Å3
Data collection top
Stoe IPDS-2
diffractometer
3651 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3193 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.059
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.9°
ω scansh = 1011
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.054, Tmax = 0.341l = 1414
9898 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.309P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3651 reflectionsΔρmax = 1.64 e Å3
191 parametersΔρmin = 1.91 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=KFc[1+0.001XFc2Λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (5)
Crystal data top
[AuCl2(C12H12N2)]2[AuCl4][AuCl2]γ = 111.344 (3)°
Mr = 1510.86V = 894.09 (7) Å3
Triclinic, P1Z = 1
a = 9.0698 (4) ÅMo Kα radiation
b = 10.0886 (4) ŵ = 17.13 mm1
c = 11.1678 (5) ÅT = 295 K
α = 91.155 (4)°0.41 × 0.28 × 0.08 mm
β = 108.148 (4)°
Data collection top
Stoe IPDS-2
diffractometer
3651 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3193 reflections with I > 2σ(I)
Tmin = 0.054, Tmax = 0.341Rint = 0.059
9898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 1.64 e Å3
3651 reflectionsΔρmin = 1.91 e Å3
191 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au11.23403 (3)0.77774 (3)0.26312 (3)0.0544 (1)
Cl11.2859 (3)0.5914 (3)0.1987 (3)0.0790 (9)
Cl21.5117 (3)0.9173 (3)0.3196 (3)0.0782 (9)
N10.9831 (9)0.6658 (8)0.2201 (7)0.060 (2)
N21.1693 (8)0.9371 (7)0.3140 (6)0.0528 (19)
C10.9039 (11)0.5243 (9)0.1758 (9)0.066 (3)
C20.7317 (12)0.4506 (10)0.1500 (9)0.069 (3)
C30.6467 (11)0.5303 (11)0.1758 (10)0.076 (3)
C40.7298 (11)0.6737 (11)0.2244 (10)0.074 (3)
C50.8990 (11)0.7414 (9)0.2443 (8)0.060 (3)
C60.6455 (15)0.2922 (11)0.1035 (13)0.093 (4)
C71.0005 (10)0.8939 (9)0.2956 (8)0.056 (3)
C80.9407 (12)0.9933 (11)0.3240 (10)0.069 (3)
C91.0501 (13)1.1320 (11)0.3714 (11)0.076 (3)
C101.2194 (13)1.1753 (9)0.3894 (10)0.070 (3)
C111.2737 (11)1.0742 (9)0.3607 (8)0.060 (3)
C121.3426 (14)1.3307 (10)0.4439 (12)0.082 (4)
Au20.000000.000000.000000.0681 (2)
Cl30.2497 (5)0.0056 (5)0.0129 (5)0.1187 (16)
Cl40.1272 (6)0.2391 (3)0.0717 (3)0.1093 (12)
Au31.000000.500000.500000.0654 (2)
Cl51.2288 (4)0.7061 (3)0.5439 (3)0.0836 (7)*
H10.966200.473700.161900.0790*
H30.531500.486100.160100.0910*
H40.671600.725400.243800.0880*
H6A0.621700.242300.171900.1400*
H6B0.717500.259900.074300.1400*
H6C0.542100.272800.034600.1400*
H80.826600.966000.311000.0820*
H91.009901.198800.392000.0910*
H111.387801.101000.374000.0730*
H12A1.384401.341200.535200.1240*
H12B1.285701.394600.417900.1240*
H12C1.435101.354000.412700.1240*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0476 (2)0.0555 (2)0.0651 (2)0.0246 (1)0.0206 (1)0.0069 (1)
Cl10.0748 (14)0.0681 (12)0.1089 (19)0.0387 (10)0.0390 (13)0.0006 (12)
Cl20.0476 (10)0.0728 (13)0.113 (2)0.0220 (9)0.0284 (11)0.0031 (13)
N10.053 (3)0.062 (4)0.059 (4)0.019 (3)0.017 (3)0.002 (3)
N20.051 (3)0.060 (3)0.053 (4)0.025 (3)0.021 (3)0.009 (3)
C10.062 (5)0.057 (4)0.074 (6)0.015 (4)0.027 (4)0.002 (4)
C20.067 (5)0.066 (5)0.062 (5)0.015 (4)0.022 (4)0.000 (4)
C30.051 (5)0.080 (6)0.079 (6)0.007 (4)0.023 (4)0.003 (5)
C40.043 (4)0.072 (5)0.091 (7)0.007 (4)0.021 (4)0.005 (5)
C50.057 (4)0.066 (5)0.061 (5)0.025 (4)0.025 (4)0.011 (4)
C60.077 (7)0.072 (6)0.107 (9)0.005 (5)0.031 (6)0.010 (6)
C70.050 (4)0.062 (4)0.060 (5)0.028 (3)0.018 (3)0.006 (4)
C80.061 (5)0.078 (5)0.079 (6)0.036 (4)0.030 (4)0.012 (5)
C90.085 (6)0.071 (5)0.094 (7)0.047 (5)0.040 (5)0.009 (5)
C100.084 (6)0.054 (4)0.071 (6)0.027 (4)0.026 (5)0.011 (4)
C110.060 (5)0.060 (4)0.062 (5)0.031 (4)0.014 (4)0.006 (4)
C120.087 (7)0.057 (5)0.103 (8)0.031 (4)0.029 (6)0.007 (5)
Au20.0810 (3)0.0527 (3)0.0547 (3)0.0170 (2)0.0130 (2)0.0067 (2)
Cl30.098 (2)0.133 (3)0.127 (3)0.052 (2)0.033 (2)0.018 (2)
Cl40.160 (3)0.0549 (12)0.0797 (18)0.0144 (15)0.0305 (19)0.0013 (11)
Au30.0724 (3)0.0670 (3)0.0672 (3)0.0335 (2)0.0296 (2)0.0161 (2)
Geometric parameters (Å, º) top
Au1—N12.028 (9)C5—C71.466 (12)
Au1—N22.027 (7)C7—C81.375 (15)
Au1—Cl12.252 (3)C8—C91.362 (15)
Au1—Cl22.262 (3)C9—C101.380 (18)
Au2—Cl4i2.261 (3)C10—C111.355 (15)
Au2—Cl3i2.246 (5)C10—C121.530 (14)
Au2—Cl32.246 (5)C1—H10.9300
Au2—Cl42.261 (3)C3—H30.9300
Au3—Cl5ii2.248 (3)C4—H40.9300
Au3—Cl52.248 (3)C6—H6B0.9600
N1—C11.343 (12)C6—H6A0.9600
N1—C51.334 (13)C6—H6C0.9600
N2—C71.375 (13)C8—H80.9300
N2—C111.339 (11)C9—H90.9300
C1—C21.393 (15)C11—H110.9300
C2—C31.380 (16)C12—H12C0.9600
C2—C61.496 (14)C12—H12A0.9600
C3—C41.369 (15)C12—H12B0.9600
C4—C51.375 (15)
Au1···Cl3iii3.588 (5)N1···C72.368 (12)
Au1···Cl53.243 (3)N1···Cl13.173 (9)
Au2···C7iv3.490 (8)N2···Cl23.165 (9)
Au2···C7v3.490 (8)N2···N12.619 (10)
Au3···C13.486 (9)N2···C52.396 (12)
Au3···C1ii3.486 (9)C1···Au33.486 (9)
Cl1···Cl4vi3.394 (4)C1···Au33.486 (9)
Cl1···N13.173 (9)C3···Cl1viii3.625 (12)
Cl1···C13.203 (11)C5···Cl4iv3.477 (9)
Cl1···Cl23.166 (4)C6···Cl33.564 (14)
Cl1···C3vi3.625 (12)C7···Au2iv3.490 (8)
Cl2···N23.165 (9)C7···Au2iii3.490 (8)
Cl2···C113.233 (11)C8···Cl3iv3.644 (12)
Cl2···Cl13.166 (4)C10···Cl4iii3.513 (11)
Cl2···C11vii3.476 (9)C11···Cl2vii3.476 (9)
Cl2···Cl5vii3.650 (4)C12···C12xi3.448 (15)
Cl3···C63.564 (14)C4···H82.8100
Cl3···C8iv3.644 (12)C8···H42.7900
Cl3···Cl43.185 (7)H1···Cl12.5900
Cl3···Au1v3.588 (5)H1···H6B2.3900
Cl3···Cl4i3.188 (7)H3···Cl1viii2.9300
Cl4···Cl3i3.188 (7)H3···H6C2.5900
Cl4···C10v3.513 (11)H4···C82.7900
Cl4···C5iv3.477 (9)H4···Cl1viii3.1200
Cl4···Cl33.185 (7)H4···Cl2viii3.0500
Cl4···Cl1viii3.394 (4)H4···H82.2800
Cl4···N1iv3.367 (8)H6A···Cl5ii2.9900
Cl5···Au13.243 (3)H6B···H12.3900
Cl5···Cl2vii3.650 (4)H6B···Cl3ix2.8700
Cl1···H4vi3.1200H6C···H32.5900
Cl1···H12.5900H6C···Cl33.0200
Cl1···H3vi2.9300H8···H42.2800
Cl2···H8vi2.7500H8···C42.8100
Cl2···H112.6400H8···Cl2viii2.7500
Cl2···H4vi3.0500H9···H12B2.4800
Cl3···H6C3.0200H9···Cl5x2.9300
Cl3···H6Bix2.8700H11···Cl22.6400
Cl5···H11vii3.1200H11···H12C2.4300
Cl5···H6Aii2.9900H11···Cl5vii3.1200
Cl5···H9x2.9300H12B···H92.4800
N1···Cl4iv3.367 (8)H12C···H112.4300
N1···N22.619 (10)
Cl1—Au1—Cl289.07 (11)C7—C8—C9119.4 (11)
Cl1—Au1—N195.5 (2)C8—C9—C10121.3 (11)
Cl1—Au1—N2175.8 (2)C11—C10—C12121.1 (11)
Cl2—Au1—N1175.3 (2)C9—C10—C11117.6 (9)
Cl2—Au1—N295.0 (2)C9—C10—C12121.3 (10)
N1—Au1—N280.5 (3)N2—C11—C10122.5 (10)
Cl3i—Au2—Cl4i89.95 (19)C2—C1—H1119.00
Cl3—Au2—Cl4i90.05 (19)N1—C1—H1119.00
Cl3—Au2—Cl489.95 (19)C2—C3—H3120.00
Cl3—Au2—Cl3i180.00C4—C3—H3120.00
Cl3i—Au2—Cl490.05 (19)C3—C4—H4120.00
Cl4—Au2—Cl4i180.00C5—C4—H4120.00
Cl5—Au3—Cl5ii180.00C2—C6—H6A109.00
Au1—N1—C1124.0 (7)C2—C6—H6B109.00
Au1—N1—C5115.3 (6)C2—C6—H6C109.00
C1—N1—C5120.7 (9)H6B—C6—H6C109.00
Au1—N2—C11126.2 (7)H6A—C6—H6B109.00
Au1—N2—C7113.9 (5)H6A—C6—H6C109.00
C7—N2—C11120.0 (8)C7—C8—H8120.00
N1—C1—C2122.3 (10)C9—C8—H8120.00
C3—C2—C6121.8 (11)C10—C9—H9119.00
C1—C2—C3116.3 (9)C8—C9—H9119.00
C1—C2—C6121.8 (10)N2—C11—H11119.00
C2—C3—C4120.9 (10)C10—C11—H11119.00
C3—C4—C5120.1 (10)C10—C12—H12A110.00
N1—C5—C4119.7 (8)C10—C12—H12B109.00
N1—C5—C7115.4 (9)C10—C12—H12C109.00
C4—C5—C7124.8 (9)H12A—C12—H12B109.00
N2—C7—C5115.0 (8)H12A—C12—H12C109.00
N2—C7—C8119.3 (8)H12B—C12—H12C109.00
C5—C7—C8125.8 (9)
Cl1—Au1—N1—C13.4 (7)C11—N2—C7—C80.9 (12)
N2—Au1—N1—C1177.7 (8)N1—C1—C2—C31.7 (14)
Cl1—Au1—N1—C5179.5 (6)N1—C1—C2—C6178.6 (10)
N2—Au1—N1—C50.7 (6)C6—C2—C3—C4176.7 (10)
Cl2—Au1—N2—C7179.0 (5)C1—C2—C3—C40.2 (15)
N1—Au1—N2—C70.0 (6)C2—C3—C4—C52.1 (16)
Cl2—Au1—N2—C111.5 (7)C3—C4—C5—C7180.0 (9)
N1—Au1—N2—C11179.5 (7)C3—C4—C5—N12.2 (14)
Au1—N1—C1—C2178.6 (7)C4—C5—C7—N2176.7 (8)
C5—N1—C1—C21.7 (14)C4—C5—C7—C84.2 (15)
Au1—N1—C5—C4176.8 (7)N1—C5—C7—N21.2 (11)
C1—N1—C5—C40.4 (13)N1—C5—C7—C8177.9 (9)
Au1—N1—C5—C71.2 (10)C5—C7—C8—C9180.0 (9)
C1—N1—C5—C7178.4 (8)N2—C7—C8—C90.9 (14)
Au1—N2—C11—C10178.3 (7)C7—C8—C9—C101.1 (16)
C7—N2—C11—C101.1 (13)C8—C9—C10—C111.3 (16)
Au1—N2—C7—C8178.6 (7)C8—C9—C10—C12179.4 (10)
Au1—N2—C7—C50.6 (9)C12—C10—C11—N2179.4 (9)
C11—N2—C7—C5179.9 (7)C9—C10—C11—N21.3 (14)
Symmetry codes: (i) x, y, z; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z; (v) x1, y1, z; (vi) x+1, y, z; (vii) x+3, y+2, z+1; (viii) x1, y, z; (ix) x+1, y, z; (x) x+2, y+2, z+1; (xi) x+3, y+3, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.593.203 (11)124
C8—H8···Cl2viii0.932.753.666 (12)169
C11—H11···Cl20.932.643.233 (11)122
Symmetry code: (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula[AuCl2(C12H12N2)]2[AuCl4][AuCl2]
Mr1510.86
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.0698 (4), 10.0886 (4), 11.1678 (5)
α, β, γ (°)91.155 (4), 108.148 (4), 111.344 (3)
V3)894.09 (7)
Z1
Radiation typeMo Kα
µ (mm1)17.13
Crystal size (mm)0.41 × 0.28 × 0.08
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.054, 0.341
No. of measured, independent and
observed [I > 2σ(I)] reflections
9898, 3651, 3193
Rint0.059
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.05
No. of reflections3651
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 1.91

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Au1—N12.028 (9)Au2—Cl32.246 (5)
Au1—N22.027 (7)Au2—Cl42.261 (3)
Au1—Cl12.252 (3)Au3—Cl52.248 (3)
Au1—Cl22.262 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.593.203 (11)124
C8—H8···Cl2i0.932.753.666 (12)169
C11—H11···Cl20.932.643.233 (11)122
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund). NS, VA and AA are grateful to Shahid Beheshti University for financial support.

References

First citationAbbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1–5.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdams, H. N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65–80.  CSD CrossRef CAS Web of Science Google Scholar
First citationAhmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1156–m1157.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAhmadi, R., Dehghan, L., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719–m1721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120–6122.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293–4299.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Safari, N., Amani, V., McKee, V., Abedi, A. & Khavasi, H. R. (2008). Acta Cryst. E64, m1189–m1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m335-m336
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds