organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benz­yl­oxy-3-meth­oxy­benzo­nitrile

aDepartment of Chemistry, Quaid-i-Azam Univeristy, Islamabad 45320, Pakistan, bDepartment of Chemistry, University of Sargodah, Sargodah, Pakistan, and cDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, People's Republic of China
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 15 February 2009; accepted 17 February 2009; online 21 February 2009)

In the mol­ecule of the title compound, C15H13NO2, the aromatic rings are oriented at a dihedral angle of 81.65 (3)°. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For the potential application of highly conjugated mol­ecules in nanoelectronics, see: Tour (2003[Tour, M. J. (2003). Molecular Electronics, Commercial Insights, Chemistry, Devices, Architecture and Programming. Singapore: World Scientific Publishing Co Pte Ltd.]) and in optoelectronics, see: Lind et al. (2004[Lind, P., Lopes, C. O., berg, K. & Eliasson, B. (2004). Chem. Phys. Lett. 387, 238-242.]); Ornelas et al. (2005[Ornelas, C., Gandum, C., Mesquita, J., Rodrigues, J., Garcia, M. H., Lopes, N., Robalo, M. P., Na ttinen, K. & Rissanen, K. (2005). Inorg. Chim. Acta, 358, 2482-2488.], 2008[Ornelas, C., Ruiz, J., Rodrigues, J. & Astruc, D. (2008). Inorg. Chem. 47, 4421-4428.]). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp, see: Garcia et al. (2001[Garcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem. 632, 133-144.]); Ornelas et al. (2005[Ornelas, C., Gandum, C., Mesquita, J., Rodrigues, J., Garcia, M. H., Lopes, N., Robalo, M. P., Na ttinen, K. & Rissanen, K. (2005). Inorg. Chim. Acta, 358, 2482-2488.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO2

  • Mr = 239.26

  • Monoclinic, P 21 /c

  • a = 14.9434 (12) Å

  • b = 9.5469 (8) Å

  • c = 8.8522 (7) Å

  • β = 102.663 (2)°

  • V = 1232.16 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.32 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.864, Tmax = 0.980

  • 7286 measured reflections

  • 2983 independent reflections

  • 2499 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.114

  • S = 1.02

  • 2983 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯N1i 0.98 2.58 3.5170 (17) 160
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2009[Garcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem. 632, 133-144.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2009[Garcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem. 632, 133-144.]).

Supporting information


Comment top

Schiff base compounds have attracted great attention for many years. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, photochromism and thermochromism. We report herein the crystal structure of the title compound.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C8-C13) are, of course, planar, and they are oriented at a dihedral angle of 81.65 (3)°.

In the crystal structure, weak intermolecular C-H···N hydrogen bonds (Table 1) link the molecules into chains along the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

The preparation of highly conjugated molecules has been of great interest for their potential applications in fields such as nanoelectronics (Tour, 2003) or optoelectronics (Ornelas et al., 2005, 2008; Lind et al., 2004). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp (Cp = cyclopentadienyl); (Garcia et al., 2001; Ornelas et al., 2005) which should result in an increase of the physical properties such as the first molecular hyperpolarizability β, which is reported to rise with the coordination to cyclopentadienylruthenium type centres (Ornelas et al., 2005, 2008). As such the preparation of the π-conjugated title compound was intended for the preparation of dinuclear ruthenium complexes for nanoelectronic application.

Related literature top

For bond-length data, see: Allen et al. (1987). For the potential application of highly conjugated molecules in nanoelectronics, see: Tour (2003) and in optoelectronics, see: Lind et al. (2004); Ornelas et al. (2005, 2008). Terminal cyano groups provide the ability to coordinate to transition metal centres such as RuCp, see: Garcia et al. (2001); Ornelas et al. (2005).

Experimental top

For the preparation of the title compound, 4-(benzyloxy)-3-methoxy benzenamine (2.29 g, 10 mmol) was treated with sodium nitrite (0.7 g, 10 mmol) in the presence of concentrated hydrochloric acid (10 ml) at 273-278 K. Aqueous cupreous cyanate solution (48%, 1.05 g, 10 mmol) was added into the resulting diazonnium salt (1.95 g, 8 mmol). The obtained title compound was separated and recrystallized in ethanol/THF mixture (yield; 65%, m.p. 411-412 K).

Refinement top

H atoms were positioned geometrically, with C-H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
4-Benzyloxy-3-methoxybenzonitrile top
Crystal data top
C15H13NO2F(000) = 504
Mr = 239.26Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7856 reflections
a = 14.9434 (12) Åθ = 2.6–28.3°
b = 9.5469 (8) ŵ = 0.09 mm1
c = 8.8522 (7) ÅT = 173 K
β = 102.663 (2)°Block, colorless
V = 1232.16 (17) Å30.32 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2983 independent reflections
Radiation source: fine-focus sealed tube2499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω and ϕ scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1719
Tmin = 0.864, Tmax = 0.980k = 1112
7286 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.2089P]
where P = (Fo2 + 2Fc2)/3
2983 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H13NO2V = 1232.16 (17) Å3
Mr = 239.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.9434 (12) ŵ = 0.09 mm1
b = 9.5469 (8) ÅT = 173 K
c = 8.8522 (7) Å0.32 × 0.25 × 0.23 mm
β = 102.663 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2983 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2499 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.980Rint = 0.018
7286 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
2983 reflectionsΔρmin = 0.17 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26381 (5)0.56473 (9)0.00751 (9)0.0409 (2)
O20.26362 (5)0.38653 (9)0.22449 (9)0.0423 (2)
N10.09205 (7)0.55876 (14)0.35630 (13)0.0545 (3)
C10.44027 (9)0.66914 (15)0.09352 (15)0.0492 (3)
H1A0.44730.72960.00650.059*
C20.51719 (9)0.62309 (16)0.14277 (16)0.0520 (3)
H2A0.57650.65230.08930.062*
C30.50825 (9)0.53599 (14)0.26781 (15)0.0479 (3)
H3A0.56120.50330.30000.058*
C40.42195 (9)0.49571 (15)0.34716 (16)0.0510 (3)
H4A0.41550.43640.43510.061*
C50.34464 (8)0.54158 (13)0.29886 (14)0.0440 (3)
H5A0.28550.51370.35430.053*
C60.35295 (8)0.62749 (12)0.17068 (13)0.0375 (2)
C70.26977 (8)0.66610 (13)0.11153 (14)0.0425 (3)
H7A0.27600.76200.06800.051*
H7B0.21410.66230.19610.051*
C80.18984 (7)0.57131 (11)0.07225 (12)0.0339 (2)
C90.18915 (7)0.47256 (11)0.19135 (12)0.0328 (2)
C100.11690 (7)0.46987 (12)0.26518 (12)0.0343 (2)
H10A0.11660.40480.34620.041*
C110.04377 (7)0.56410 (12)0.21963 (12)0.0358 (2)
C120.04428 (8)0.66074 (13)0.10355 (13)0.0403 (3)
H12A0.00550.72410.07360.048*
C130.11769 (8)0.66500 (13)0.03071 (13)0.0399 (3)
H13A0.11850.73240.04790.048*
C140.26552 (8)0.28301 (13)0.34102 (13)0.0411 (3)
H14A0.32200.22800.35340.062*
H14B0.21240.22100.31050.062*
H14C0.26350.32880.43930.062*
C150.03198 (7)0.55965 (13)0.29606 (13)0.0411 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0369 (4)0.0459 (5)0.0439 (4)0.0084 (3)0.0176 (3)0.0109 (3)
O20.0311 (4)0.0469 (5)0.0509 (5)0.0104 (3)0.0132 (3)0.0138 (4)
N10.0373 (5)0.0777 (8)0.0499 (6)0.0106 (5)0.0128 (4)0.0015 (5)
C10.0493 (7)0.0525 (7)0.0454 (6)0.0055 (5)0.0094 (5)0.0083 (5)
C20.0378 (6)0.0625 (8)0.0544 (7)0.0090 (6)0.0071 (5)0.0007 (6)
C30.0408 (6)0.0529 (7)0.0547 (7)0.0047 (5)0.0204 (5)0.0033 (6)
C40.0481 (7)0.0573 (8)0.0528 (7)0.0108 (6)0.0220 (6)0.0127 (6)
C50.0383 (6)0.0496 (7)0.0463 (6)0.0109 (5)0.0142 (5)0.0036 (5)
C60.0408 (6)0.0350 (5)0.0392 (5)0.0020 (4)0.0139 (4)0.0061 (4)
C70.0475 (6)0.0398 (6)0.0435 (6)0.0055 (5)0.0171 (5)0.0084 (5)
C80.0317 (5)0.0370 (5)0.0337 (5)0.0025 (4)0.0085 (4)0.0009 (4)
C90.0263 (5)0.0351 (5)0.0362 (5)0.0026 (4)0.0054 (4)0.0002 (4)
C100.0295 (5)0.0386 (5)0.0348 (5)0.0000 (4)0.0068 (4)0.0003 (4)
C110.0293 (5)0.0427 (6)0.0354 (5)0.0022 (4)0.0072 (4)0.0078 (4)
C120.0367 (5)0.0433 (6)0.0401 (5)0.0119 (4)0.0069 (4)0.0025 (5)
C130.0421 (6)0.0411 (6)0.0373 (5)0.0090 (5)0.0106 (4)0.0032 (4)
C140.0366 (5)0.0411 (6)0.0431 (6)0.0037 (4)0.0034 (4)0.0065 (5)
C150.0320 (5)0.0523 (7)0.0385 (6)0.0063 (5)0.0067 (4)0.0043 (5)
Geometric parameters (Å, º) top
C1—C21.3872 (18)C8—C131.3870 (15)
C1—C61.3916 (17)C8—C91.4161 (15)
C1—H1A0.9500C9—O21.3624 (12)
C2—C31.3673 (19)C9—C101.3794 (14)
C2—H2A0.9500C10—C111.4046 (14)
C3—C41.3810 (18)C10—H10A0.9500
C3—H3A0.9500C11—C121.3822 (16)
C4—C51.3878 (17)C11—C151.4411 (14)
C4—H4A0.9500C12—C131.3897 (15)
C5—C61.3834 (16)C12—H12A0.9500
C5—H5A0.9500C13—H13A0.9500
C6—C71.4967 (15)C14—O21.4244 (13)
C7—O11.4478 (13)C14—H14A0.9800
C7—H7A0.9900C14—H14B0.9800
C7—H7B0.9900C14—H14C0.9800
C8—O11.3535 (12)C15—N11.1402 (15)
C8—O1—C7117.61 (8)O1—C8—C13125.25 (10)
C9—O2—C14117.38 (8)O1—C8—C9115.10 (9)
C2—C1—C6120.51 (12)C13—C8—C9119.65 (9)
C2—C1—H1A119.7O2—C9—C10125.03 (9)
C6—C1—H1A119.7O2—C9—C8115.01 (9)
C3—C2—C1120.43 (12)C10—C9—C8119.96 (9)
C3—C2—H2A119.8C9—C10—C11119.51 (10)
C1—C2—H2A119.8C9—C10—H10A120.2
C2—C3—C4119.72 (12)C11—C10—H10A120.2
C2—C3—H3A120.1C12—C11—C10120.68 (10)
C4—C3—H3A120.1C12—C11—C15120.10 (10)
C3—C4—C5120.20 (12)C10—C11—C15119.22 (10)
C3—C4—H4A119.9C11—C12—C13119.87 (10)
C5—C4—H4A119.9C11—C12—H12A120.1
C6—C5—C4120.58 (11)C13—C12—H12A120.1
C6—C5—H5A119.7C8—C13—C12120.33 (10)
C4—C5—H5A119.7C8—C13—H13A119.8
C5—C6—C1118.55 (11)C12—C13—H13A119.8
C5—C6—C7120.06 (10)O2—C14—H14A109.5
C1—C6—C7121.28 (11)O2—C14—H14B109.5
O1—C7—C6106.16 (9)H14A—C14—H14B109.5
O1—C7—H7A110.5O2—C14—H14C109.5
C6—C7—H7A110.5H14A—C14—H14C109.5
O1—C7—H7B110.5H14B—C14—H14C109.5
C6—C7—H7B110.5N1—C15—C11178.73 (13)
H7A—C7—H7B108.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···N1i0.982.583.5170 (17)160
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13NO2
Mr239.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.9434 (12), 9.5469 (8), 8.8522 (7)
β (°) 102.663 (2)
V3)1232.16 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.864, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7286, 2983, 2499
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.02
No. of reflections2983
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···N1i0.982.583.5170 (17)160
Symmetry code: (i) x, y1/2, z+1/2.
 

Footnotes

Additional contact author, e-mail: rwywong@net3.hkbu.edu.hk.

Acknowledgements

The authors gratefully acknowledge the financial support of the Higher Education Commission, Islamabad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarcia, M. H., Rodrigues, J. C., Dias, A. R., Piedade, M. F. M., Duarte, M. T., Robalo, M. P. & Lopes, N. (2001). J. Organomet. Chem. 632, 133–144.  CSD CrossRef CAS Google Scholar
First citationLind, P., Lopes, C. O., berg, K. & Eliasson, B. (2004). Chem. Phys. Lett. 387, 238–242.  Web of Science CrossRef CAS Google Scholar
First citationOrnelas, C., Gandum, C., Mesquita, J., Rodrigues, J., Garcia, M. H., Lopes, N., Robalo, M. P., Na ttinen, K. & Rissanen, K. (2005). Inorg. Chim. Acta, 358, 2482–2488.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrnelas, C., Ruiz, J., Rodrigues, J. & Astruc, D. (2008). Inorg. Chem. 47, 4421–4428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTour, M. J. (2003). Molecular Electronics, Commercial Insights, Chemistry, Devices, Architecture and Programming. Singapore: World Scientific Publishing Co Pte Ltd.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds