organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3α-Hydr­­oxy-N-(3-hy­droxy­prop­yl)-5β-cholan-24-amide

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FIN-40014 Jyväskylä, Finland
*Correspondence e-mail: arto.m.valkonen@jyu.fi

(Received 20 February 2009; accepted 24 February 2009; online 28 February 2009)

The title compound, C27H47NO3, is a (3-hydroxy­prop­yl)amide derivative of naturally occurring enanti­opure lithocholic acid (3α-hydr­oxy-5β-cholan-24-oic acid). The mol­ecule contains four fused rings: three six-membered rings in chair conformations and one five-membered ring in a half-chair form. The two terminal six-membered rings are cis-fused, while other rings are trans-fused. The structure contains an intra­molecular O—H⋯O hydrogen bond and a similar hydrogen-bond framework to the corresponding deoxy­cholic and chenodeoxy­cholic acid derivatives. Inter­molecular O—H⋯O and N—H⋯O inter­actions are also present in the crystal. This compound seems to have at least two polymorphic forms from a comparison of the X-ray powder pattern simulated from the present structure of the title compound and that previously obtained for the powder sample.

Related literature

For general background, see: Tamminen et al. (2000[Tamminen, J., Kolehmainen, E., Haapala, M., Salo, H. & Linnanto, J. (2000). Arkivoc, i, 80-86.]); Valkonen et al. (2004[Valkonen, A., Lahtinen, M., Virtanen, E., Kaikkonen, S. & Kolehmainen, E. (2004). Biosens. Biolelectron. 20, 1233-1241.]); Valkonen (2008[Valkonen, A. (2008). PhD thesis, University of Jyväskylä, Finland.]). For related structures, see: Valkonen et al. (2007[Valkonen, A., Kolehmainen, E., Lahtinen, M., Sievänen, E., Noponen, V., Tolonen, M. & Kauppinen, R. (2007). Molecules, 12, 2161-2178.], 2008[Valkonen, A., Lahtinen, M. & Kolehmainen, E. (2008). Steroids, 73, 1228-1241.]).

[Scheme 1]

Experimental

Crystal data
  • C27H47NO3

  • Mr = 433.66

  • Monoclinic, P 21

  • a = 11.4462 (5) Å

  • b = 7.5998 (3) Å

  • c = 14.3286 (6) Å

  • β = 102.055 (2)°

  • V = 1218.94 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 K

  • 0.30 × 0.10 × 0.06 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: none

  • 9113 measured reflections

  • 3155 independent reflections

  • 2207 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.135

  • S = 1.05

  • 3155 reflections

  • 289 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O27—H27O⋯O24 0.86 (4) 1.98 (2) 2.810 (4) 164 (5)
O3—H3O⋯O24i 0.84 (2) 2.05 (2) 2.880 (5) 171 (5)
N24—H24⋯O3i 0.89 (2) 2.20 (3) 3.032 (5) 155 (4)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

The title compound is a lithocholic acid (LCA) derivative which was supposed to be a potential organogelating agent (Valkonen et al., 2004). However, in gelation studies these properties were found to be too weak for utilization in any purposes. Although single crystals of analogous deoxycholic (DCA, 3α,12α-dihydroxy-5β-cholan-24-oic acid) and chenodeoxycholic (CDCA, 3α,7α-dihydroxy-5β-cholan-24-oic acid) acid amide derivatives were easily obtained during gelation tests (Valkonen et al., 2004; Valkonen et al., 2007; Valkonen et al., 2008), the crystals of the title compound were very thin needles and far too small for crystallographic data collection. Methanol, which is unacceptably good solvent for the title compound and analogues in gel formation (Valkonen et al., 2004), showed to be a good solvent for growing of reasonable size crystals of the title compound for X-ray diffraction studies. The molecular structure of the title compound is shown in Fig. 1.

The simulated powder diffraction pattern by Mercury (Macrae et al., 2006) from the single crystals of title compound in Fig. 2 is not congruent with the powdery sample pattern previously investigated (Valkonen et al., 2004), indicating the title compound to have more than one polymorphic form. However, the single-crystal structure of title compound is isostructural to analogous DCA and CDCA derivatives, N-(3-hydroxypropyl) 3α,12α-dihydroxy-5β-cholan-24-amide and N-(3-hydroxypropyl) 3α,7α-dihydroxy-5β-cholan-24-amide, as also seen from the simulated powder diffraction patterns in Fig. 2. These compounds have also similar unit-cell parameters, an intramolecular O—H···O hydrogen bond between hydroxyl group (O27—H27o) at the end of the side chain and amide carbonyl (O24) (Fig. 1 and Table 1) as well as similar ttti side chain overall conformation (Valkonen et al., 2008; Valkonen, 2008). The intermolecular H-bond frameworks are also identical, which is possible due to the lack of the acceptors for the extra O—H donors in structures of DCA and CDCA derivatives.

Related literature top

For general background, see: Tamminen et al. (2000); Valkonen et al. (2004); Valkonen (2008). For related structures, see: Valkonen et al. (2007, 2008).

Experimental top

The first step was a preparation of methyl lithocholate from lithocholic acid according to literature method (Tamminen et al., 2000). In the second step methyl lithocholate (1.69 g, 4.33 mmol) and 3-amino-1-propanol (3.25 g, 43.3 mmol) were dissolved in 20 ml of methanol. The resulting mixture was heated with an oil bath and stirred at 70–80 °C for 2 days. Cooled solution was poured into 50 ml of water, the precipitate was filtered and washed twice with water. The obtained product was dried and recrystallized from acetonitrile. Yield was 1.48 g (79%).

Suitable single crystals for X-ray diffraction were obtained by very slow evaporation of analytical sample from NMR-tube, where methanol-d4 was used as a solvent. The melting point of these single crystals (186–188 °C) was found to be in agreement with the one for powdery product (184–185 °C, Valkonen et al., 2004).

Refinement top

In the absence of significant anomalous scattering effects Friedel pairs have been merged. The meaningless Flack parameter is not reported. All H atoms were visible in electron density maps, but those bonded to C were placed at idealized positions and allowed to ride on their parent atoms at C—H distances of 0.98 Å (methyl), 0.99 Å (methylene), and 1.00 Å (methine), with Uiso(H) of 1.2 times Ueq(C) (or 1.5 times Ueq(C) for methyls). The N—H proton was found in the electron density map and it was fixed in place by DFIX restraint at distance of 0.91 (2) Å from N atom, and Uiso(H) value of 1.2 times Ueq(N) was used. The O—H protons were also found in the electron density map, restrained by DFIX [0.84 (2) Å from O] and Uiso(H) factors set to values of 1.5 times Ueq(O).

Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. The experimental powder diffraction pattern of powdery sample and the simulated pattern from the single-crystal structure of title compound. The simulated patterns of analogous DCA and CDCA derivatives are also presented for comparison.
3α-Hydroxy-N-(3-hydroxypropyl)-5β-cholan-24-amide top
Crystal data top
C27H47NO3F(000) = 480
Mr = 433.66Dx = 1.182 Mg m3
Monoclinic, P21Melting point = 459–461 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 11.4462 (5) ÅCell parameters from 4982 reflections
b = 7.5998 (3) Åθ = 0.4–28.3°
c = 14.3286 (6) ŵ = 0.08 mm1
β = 102.055 (2)°T = 123 K
V = 1218.94 (9) Å3Block, colourless
Z = 20.30 × 0.10 × 0.06 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2207 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
Detector resolution: 9 pixels mm-1h = 1515
ϕ and ω scansk = 810
9113 measured reflectionsl = 1618
3155 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.9968P]
where P = (Fo2 + 2Fc2)/3
3155 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = 0.32 e Å3
Crystal data top
C27H47NO3V = 1218.94 (9) Å3
Mr = 433.66Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.4462 (5) ŵ = 0.08 mm1
b = 7.5998 (3) ÅT = 123 K
c = 14.3286 (6) Å0.30 × 0.10 × 0.06 mm
β = 102.055 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
2207 reflections with I > 2σ(I)
9113 measured reflectionsRint = 0.091
3155 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0674 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
3155 reflectionsΔρmin = 0.32 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.1237 (2)0.3301 (5)0.2779 (2)0.0286 (7)
H3O0.098 (4)0.433 (4)0.267 (4)0.043*
O240.9728 (3)0.1814 (4)0.2630 (2)0.0254 (7)
O271.1324 (3)0.1259 (5)0.3848 (2)0.0321 (8)
H27O1.076 (3)0.128 (8)0.354 (3)0.048*
N240.9619 (3)0.4638 (5)0.3142 (2)0.0228 (8)
H240.961 (4)0.576 (3)0.296 (3)0.027*
C10.4412 (3)0.4854 (6)0.3733 (3)0.0174 (9)
H1A0.43870.48520.44190.021*
H1B0.48530.59200.36080.021*
C20.3124 (4)0.4976 (6)0.3147 (3)0.0194 (9)
H2A0.27340.60480.33290.023*
H2B0.31320.50510.24590.023*
C30.2436 (3)0.3357 (6)0.3338 (3)0.0208 (8)
H30.24020.33360.40300.025*
C40.3066 (4)0.1691 (5)0.3105 (3)0.0171 (9)
H4A0.26250.06510.32640.021*
H4B0.30440.16600.24110.021*
C50.4362 (4)0.1573 (6)0.3644 (3)0.0179 (9)
H50.43500.14830.43380.021*
C60.4926 (4)0.0133 (6)0.3366 (3)0.0209 (9)
H6A0.56680.03750.38430.025*
H6B0.43680.11210.33860.025*
C70.5222 (4)0.0058 (6)0.2371 (3)0.0197 (9)
H7A0.56580.11390.22640.024*
H7B0.44710.00160.18830.024*
C80.5982 (4)0.1547 (5)0.2259 (3)0.0150 (8)
H80.67600.14460.27290.018*
C90.5346 (3)0.3249 (6)0.2484 (2)0.0149 (7)
H90.45430.32550.20440.018*
C100.5113 (3)0.3215 (6)0.3519 (3)0.0162 (8)
C110.5986 (4)0.4930 (6)0.2267 (3)0.0193 (9)
H11A0.67210.50840.27650.023*
H11B0.54610.59520.23030.023*
C120.6329 (4)0.4923 (6)0.1274 (3)0.0205 (9)
H12A0.55930.49720.07690.025*
H12B0.68100.59830.12130.025*
C130.7040 (3)0.3283 (6)0.1135 (2)0.0150 (7)
C140.6243 (4)0.1675 (5)0.1261 (3)0.0153 (9)
H140.54580.18560.08120.018*
C150.6835 (4)0.0112 (5)0.0885 (3)0.0210 (9)
H15A0.62440.08230.06520.025*
H15B0.74780.03820.13880.025*
C160.7354 (4)0.0897 (6)0.0050 (3)0.0198 (9)
H16A0.82040.05630.01200.024*
H16B0.69040.04520.05710.024*
C170.7229 (3)0.2934 (5)0.0104 (3)0.0161 (9)
H170.64740.32720.03490.019*
C180.8249 (3)0.3242 (7)0.1850 (3)0.0213 (8)
H18A0.86890.21790.17450.032*
H18B0.81120.32370.25020.032*
H18C0.87170.42840.17570.032*
C190.6294 (3)0.3191 (7)0.4273 (3)0.0219 (8)
H19A0.67650.42380.41960.033*
H19B0.67490.21320.41890.033*
H19C0.61170.31880.49140.033*
C200.8261 (4)0.3916 (6)0.0206 (3)0.0201 (9)
H200.90170.35930.02500.024*
C210.8120 (5)0.5929 (6)0.0172 (3)0.0309 (11)
H21A0.80520.62850.04720.046*
H21B0.74000.62860.06310.046*
H21C0.88200.64950.03360.046*
C220.8381 (3)0.3326 (7)0.1215 (3)0.0200 (8)
H22A0.84130.20250.12340.024*
H22B0.76630.37100.16840.024*
C230.9502 (4)0.4082 (6)0.1506 (3)0.0221 (9)
H23A0.94540.53820.15180.027*
H23B1.02190.37400.10250.027*
C240.9626 (3)0.3426 (6)0.2473 (3)0.0198 (8)
C250.9603 (4)0.4214 (6)0.4139 (3)0.0265 (10)
H25A0.90740.50570.45550.032*
H25B0.92650.30210.42800.032*
C261.0851 (4)0.4280 (6)0.4374 (3)0.0312 (11)
H26A1.07800.39980.50580.037*
H26B1.11650.54930.42690.037*
C271.1732 (4)0.3029 (7)0.3787 (3)0.0268 (11)
H27A1.24960.30910.40060.032*
H27B1.18880.34080.31110.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0175 (14)0.0220 (15)0.0440 (18)0.0023 (16)0.0010 (12)0.0018 (17)
O240.0259 (16)0.0213 (17)0.0316 (17)0.0016 (15)0.0119 (13)0.0033 (15)
O270.0307 (18)0.037 (2)0.0309 (18)0.0040 (16)0.0128 (14)0.0078 (15)
N240.0225 (18)0.025 (2)0.0227 (18)0.0037 (17)0.0092 (15)0.0037 (17)
C10.018 (2)0.020 (2)0.0136 (19)0.0009 (19)0.0023 (16)0.0057 (17)
C20.020 (2)0.016 (2)0.023 (2)0.0025 (19)0.0064 (17)0.0003 (19)
C30.0142 (17)0.023 (2)0.025 (2)0.001 (2)0.0027 (15)0.001 (2)
C40.018 (2)0.012 (2)0.024 (2)0.0014 (18)0.0083 (16)0.0031 (18)
C50.020 (2)0.017 (2)0.019 (2)0.0024 (19)0.0081 (17)0.0027 (17)
C60.024 (2)0.014 (2)0.027 (2)0.0026 (19)0.0114 (17)0.0054 (18)
C70.020 (2)0.015 (2)0.025 (2)0.0020 (19)0.0076 (17)0.0019 (18)
C80.015 (2)0.012 (2)0.018 (2)0.0003 (18)0.0032 (16)0.0004 (17)
C90.0143 (17)0.0155 (18)0.0154 (18)0.000 (2)0.0040 (14)0.0013 (19)
C100.0186 (18)0.0147 (18)0.0159 (18)0.000 (2)0.0047 (15)0.0007 (18)
C110.026 (2)0.012 (2)0.024 (2)0.003 (2)0.0116 (18)0.0034 (19)
C120.027 (2)0.018 (2)0.018 (2)0.001 (2)0.0094 (18)0.0033 (18)
C130.0155 (17)0.0169 (18)0.0135 (17)0.001 (2)0.0052 (14)0.0002 (18)
C140.018 (2)0.009 (2)0.018 (2)0.0027 (18)0.0027 (16)0.0016 (17)
C150.031 (2)0.014 (2)0.020 (2)0.0002 (19)0.0091 (18)0.0006 (17)
C160.024 (2)0.016 (2)0.021 (2)0.0014 (18)0.0076 (18)0.0016 (17)
C170.0156 (18)0.019 (2)0.0130 (18)0.0013 (18)0.0007 (14)0.0009 (16)
C180.0200 (18)0.024 (2)0.0191 (19)0.003 (2)0.0031 (15)0.003 (2)
C190.0180 (18)0.025 (2)0.022 (2)0.003 (2)0.0018 (15)0.001 (2)
C200.023 (2)0.023 (2)0.016 (2)0.0030 (18)0.0072 (17)0.0012 (16)
C210.044 (3)0.023 (2)0.031 (3)0.013 (2)0.022 (2)0.007 (2)
C220.0204 (18)0.021 (2)0.0191 (19)0.004 (2)0.0053 (15)0.0011 (19)
C230.019 (2)0.026 (2)0.023 (2)0.0045 (19)0.0084 (18)0.0023 (18)
C240.0152 (18)0.024 (2)0.021 (2)0.001 (2)0.0050 (15)0.004 (2)
C250.022 (2)0.032 (3)0.024 (2)0.008 (2)0.0022 (18)0.0090 (19)
C260.039 (3)0.034 (3)0.025 (2)0.003 (2)0.015 (2)0.004 (2)
C270.0182 (19)0.042 (3)0.021 (2)0.005 (2)0.0055 (16)0.004 (2)
Geometric parameters (Å, º) top
O3—C31.438 (4)C12—H12B0.9900
O3—H3O0.84 (2)C13—C181.541 (5)
O24—C241.256 (5)C13—C141.558 (6)
O27—C271.420 (6)C13—C171.559 (5)
O27—H27O0.86 (4)C14—C151.520 (6)
N24—C241.328 (6)C14—H141.0000
N24—C251.460 (5)C15—C161.561 (5)
N24—H240.89 (2)C15—H15A0.9900
C1—C21.539 (5)C15—H15B0.9900
C1—C101.546 (6)C16—C171.558 (6)
C1—H1A0.9900C16—H16A0.9900
C1—H1B0.9900C16—H16B0.9900
C2—C31.516 (6)C17—C201.539 (5)
C2—H2A0.9900C17—H171.0000
C2—H2B0.9900C18—H18A0.9800
C3—C41.528 (6)C18—H18B0.9800
C3—H31.0000C18—H18C0.9800
C4—C51.525 (5)C19—H19A0.9800
C4—H4A0.9900C19—H19B0.9800
C4—H4B0.9900C19—H19C0.9800
C5—C61.537 (6)C20—C211.540 (6)
C5—C101.546 (6)C20—C221.547 (5)
C5—H51.0000C20—H201.0000
C6—C71.534 (5)C21—H21A0.9800
C6—H6A0.9900C21—H21B0.9800
C6—H6B0.9900C21—H21C0.9800
C7—C81.526 (5)C22—C231.541 (5)
C7—H7A0.9900C22—H22A0.9900
C7—H7B0.9900C22—H22B0.9900
C8—C141.524 (5)C23—C241.507 (5)
C8—C91.551 (5)C23—H23A0.9900
C8—H81.0000C23—H23B0.9900
C9—C111.537 (6)C25—C261.535 (6)
C9—C101.562 (5)C25—H25A0.9900
C9—H91.0000C25—H25B0.9900
C10—C191.544 (5)C26—C271.508 (6)
C11—C121.553 (5)C26—H26A0.9900
C11—H11A0.9900C26—H26B0.9900
C11—H11B0.9900C27—H27A0.9900
C12—C131.524 (6)C27—H27B0.9900
C12—H12A0.9900
C3—O3—H3O109 (4)C14—C13—C17100.2 (3)
C27—O27—H27O103 (4)C15—C14—C8118.1 (3)
C24—N24—C25123.4 (4)C15—C14—C13104.9 (3)
C24—N24—H24117 (3)C8—C14—C13113.2 (3)
C25—N24—H24120 (3)C15—C14—H14106.7
C2—C1—C10114.7 (3)C8—C14—H14106.7
C2—C1—H1A108.6C13—C14—H14106.7
C10—C1—H1A108.6C14—C15—C16104.0 (3)
C2—C1—H1B108.6C14—C15—H15A111.0
C10—C1—H1B108.6C16—C15—H15A111.0
H1A—C1—H1B107.6C14—C15—H15B111.0
C3—C2—C1109.1 (3)C16—C15—H15B111.0
C3—C2—H2A109.9H15A—C15—H15B109.0
C1—C2—H2A109.9C17—C16—C15106.7 (3)
C3—C2—H2B109.9C17—C16—H16A110.4
C1—C2—H2B109.9C15—C16—H16A110.4
H2A—C2—H2B108.3C17—C16—H16B110.4
O3—C3—C2113.2 (3)C15—C16—H16B110.4
O3—C3—C4107.0 (3)H16A—C16—H16B108.6
C2—C3—C4110.3 (3)C20—C17—C16112.6 (3)
O3—C3—H3108.7C20—C17—C13117.2 (3)
C2—C3—H3108.7C16—C17—C13104.4 (3)
C4—C3—H3108.7C20—C17—H17107.4
C5—C4—C3113.1 (3)C16—C17—H17107.4
C5—C4—H4A109.0C13—C17—H17107.4
C3—C4—H4A109.0C13—C18—H18A109.5
C5—C4—H4B109.0C13—C18—H18B109.5
C3—C4—H4B109.0H18A—C18—H18B109.5
H4A—C4—H4B107.8C13—C18—H18C109.5
C4—C5—C6109.6 (3)H18A—C18—H18C109.5
C4—C5—C10113.5 (3)H18B—C18—H18C109.5
C6—C5—C10112.2 (3)C10—C19—H19A109.5
C4—C5—H5107.1C10—C19—H19B109.5
C6—C5—H5107.1H19A—C19—H19B109.5
C10—C5—H5107.1C10—C19—H19C109.5
C7—C6—C5113.3 (3)H19A—C19—H19C109.5
C7—C6—H6A108.9H19B—C19—H19C109.5
C5—C6—H6A108.9C17—C20—C21112.4 (4)
C7—C6—H6B108.9C17—C20—C22110.6 (3)
C5—C6—H6B108.9C21—C20—C22110.3 (4)
H6A—C6—H6B107.7C17—C20—H20107.8
C8—C7—C6111.7 (3)C21—C20—H20107.8
C8—C7—H7A109.3C22—C20—H20107.8
C6—C7—H7A109.3C20—C21—H21A109.5
C8—C7—H7B109.3C20—C21—H21B109.5
C6—C7—H7B109.3H21A—C21—H21B109.5
H7A—C7—H7B107.9C20—C21—H21C109.5
C14—C8—C7112.2 (3)H21A—C21—H21C109.5
C14—C8—C9109.5 (3)H21B—C21—H21C109.5
C7—C8—C9110.0 (3)C23—C22—C20112.8 (3)
C14—C8—H8108.4C23—C22—H22A109.0
C7—C8—H8108.4C20—C22—H22A109.0
C9—C8—H8108.4C23—C22—H22B109.0
C11—C9—C8112.8 (3)C20—C22—H22B109.0
C11—C9—C10112.9 (3)H22A—C22—H22B107.8
C8—C9—C10111.4 (3)C24—C23—C22111.7 (3)
C11—C9—H9106.4C24—C23—H23A109.3
C8—C9—H9106.4C22—C23—H23A109.3
C10—C9—H9106.4C24—C23—H23B109.3
C19—C10—C1106.6 (3)C22—C23—H23B109.3
C19—C10—C5109.6 (3)H23A—C23—H23B107.9
C1—C10—C5107.7 (3)O24—C24—N24122.3 (4)
C19—C10—C9111.5 (3)O24—C24—C23121.1 (4)
C1—C10—C9111.9 (3)N24—C24—C23116.6 (4)
C5—C10—C9109.4 (3)N24—C25—C26112.6 (4)
C9—C11—C12113.9 (3)N24—C25—H25A109.1
C9—C11—H11A108.8C26—C25—H25A109.1
C12—C11—H11A108.8N24—C25—H25B109.1
C9—C11—H11B108.8C26—C25—H25B109.1
C12—C11—H11B108.8H25A—C25—H25B107.8
H11A—C11—H11B107.7C27—C26—C25113.7 (4)
C13—C12—C11111.5 (3)C27—C26—H26A108.8
C13—C12—H12A109.3C25—C26—H26A108.8
C11—C12—H12A109.3C27—C26—H26B108.8
C13—C12—H12B109.3C25—C26—H26B108.8
C11—C12—H12B109.3H26A—C26—H26B107.7
H12A—C12—H12B108.0O27—C27—C26112.9 (3)
C12—C13—C18111.1 (3)O27—C27—H27A109.0
C12—C13—C14106.5 (3)C26—C27—H27A109.0
C18—C13—C14111.9 (3)O27—C27—H27B109.0
C12—C13—C17116.5 (3)C26—C27—H27B109.0
C18—C13—C17110.1 (3)H27A—C27—H27B107.8
C10—C1—C2—C358.8 (4)C11—C12—C13—C17168.6 (3)
C1—C2—C3—O3176.7 (3)C7—C8—C14—C1555.8 (5)
C1—C2—C3—C456.7 (4)C9—C8—C14—C15178.2 (3)
O3—C3—C4—C5179.5 (3)C7—C8—C14—C13178.8 (3)
C2—C3—C4—C555.9 (4)C9—C8—C14—C1358.7 (4)
C3—C4—C5—C6179.8 (3)C12—C13—C14—C15166.7 (3)
C3—C4—C5—C1053.6 (4)C18—C13—C14—C1571.8 (4)
C4—C5—C6—C775.0 (4)C17—C13—C14—C1544.8 (4)
C10—C5—C6—C752.1 (5)C12—C13—C14—C863.2 (4)
C5—C6—C7—C853.0 (5)C18—C13—C14—C858.4 (4)
C6—C7—C8—C14177.8 (3)C17—C13—C14—C8175.0 (3)
C6—C7—C8—C955.6 (4)C8—C14—C15—C16161.2 (3)
C14—C8—C9—C1149.3 (4)C13—C14—C15—C1634.1 (4)
C7—C8—C9—C11173.0 (4)C14—C15—C16—C179.7 (4)
C14—C8—C9—C10177.4 (3)C15—C16—C17—C20146.1 (3)
C7—C8—C9—C1058.9 (4)C15—C16—C17—C1317.9 (4)
C2—C1—C10—C19171.7 (3)C12—C13—C17—C2082.7 (4)
C2—C1—C10—C554.1 (4)C18—C13—C17—C2044.9 (5)
C2—C1—C10—C966.2 (4)C14—C13—C17—C20162.8 (3)
C4—C5—C10—C19165.9 (3)C12—C13—C17—C16152.0 (4)
C6—C5—C10—C1969.2 (4)C18—C13—C17—C1680.4 (4)
C4—C5—C10—C150.3 (4)C14—C13—C17—C1637.6 (4)
C6—C5—C10—C1175.2 (3)C16—C17—C20—C21178.8 (4)
C4—C5—C10—C971.6 (4)C13—C17—C20—C2160.1 (5)
C6—C5—C10—C953.3 (4)C16—C17—C20—C2254.9 (5)
C11—C9—C10—C1964.0 (5)C13—C17—C20—C22176.0 (3)
C8—C9—C10—C1964.1 (5)C17—C20—C22—C23172.3 (3)
C11—C9—C10—C155.3 (4)C21—C20—C22—C2362.6 (5)
C8—C9—C10—C1176.6 (3)C20—C22—C23—C24177.6 (4)
C11—C9—C10—C5174.6 (3)C25—N24—C24—O246.6 (6)
C8—C9—C10—C557.4 (4)C25—N24—C24—C23173.3 (3)
C8—C9—C11—C1247.6 (4)C22—C23—C24—O2460.4 (5)
C10—C9—C11—C12174.9 (3)C22—C23—C24—N24119.5 (4)
C9—C11—C12—C1353.0 (5)C24—N24—C25—C2697.7 (5)
C11—C12—C13—C1864.3 (4)N24—C25—C26—C2759.3 (5)
C11—C12—C13—C1457.9 (4)C25—C26—C27—O2755.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H27O···O240.86 (4)1.98 (2)2.810 (4)164 (5)
O3—H3O···O24i0.84 (2)2.05 (2)2.880 (5)171 (5)
N24—H24···O3i0.89 (2)2.20 (3)3.032 (5)155 (4)
Symmetry code: (i) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC27H47NO3
Mr433.66
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)11.4462 (5), 7.5998 (3), 14.3286 (6)
β (°) 102.055 (2)
V3)1218.94 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.10 × 0.06
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9113, 3155, 2207
Rint0.091
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.135, 1.05
No. of reflections3155
No. of parameters289
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.32

Computer programs: COLLECT (Bruker, 2008), DENZO-SMN (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H27O···O240.86 (4)1.98 (2)2.810 (4)164 (5)
O3—H3O···O24i0.84 (2)2.05 (2)2.880 (5)171 (5)
N24—H24···O3i0.89 (2)2.20 (3)3.032 (5)155 (4)
Symmetry code: (i) x+1, y+1/2, z.
 

Acknowledgements

BSc student Mirka Kaariste is gratefully acknowledged for her help with the synthesis of the title compound. AV is grateful to Academy Professor Kari Rissanen and the Academy of Finland for funding.

References

First citationBruker (2008). COLLECT. Bruker AXS Inc., Delft, The Netherlands.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamminen, J., Kolehmainen, E., Haapala, M., Salo, H. & Linnanto, J. (2000). Arkivoc, i, 80–86.  CrossRef Google Scholar
First citationValkonen, A. (2008). PhD thesis, University of Jyväskylä, Finland.  Google Scholar
First citationValkonen, A., Kolehmainen, E., Lahtinen, M., Sievänen, E., Noponen, V., Tolonen, M. & Kauppinen, R. (2007). Molecules, 12, 2161–2178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationValkonen, A., Lahtinen, M. & Kolehmainen, E. (2008). Steroids, 73, 1228–1241.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationValkonen, A., Lahtinen, M., Virtanen, E., Kaikkonen, S. & Kolehmainen, E. (2004). Biosens. Biolelectron. 20, 1233–1241.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds