metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m265-m266

Bis(1,3-benzo­thia­zol-2-amine-κN3)silver(I) nitrate acetone solvate

aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
*Correspondence e-mail: scron@sun.ac.za

(Received 29 January 2009; accepted 4 February 2009; online 11 February 2009)

In the title compound, [Ag(C7H6N2S)2]NO3·C3H6O, the AgI ion is coordinated to two benzothia­zol-2-amine ligands via the thia­zole N atoms in an approximately linear arrangement. The dihedral angle between the mean planes of the two 1,3-benzothia­zole groups is 5.9 (3)°. Both amine groups on the ligands are oriented in the same direction and are engaged in N—H⋯O hydrogen bonding with the nitrate counter-anion, forming one-dimensional columns along the b-axis direction. Voids created by inefficient crystal packing are occupied by acetone solvent mol­ecules which are disordered over two sites with occupancies of 0.563 (11) and 0.437 (11).

Related literature

For general background, see: de Jongh et al. (2008[de Jongh, L. (2008). MSc Thesis, pp. 59-62. University of Stellenbosch, South Africa, pp. 59-62.]); Tewari et al. (1991[Tewari, S. P., Tripathi, P. & Sinha, A. I. P. (1991). Asian J. Chem. 3, 124-127.]). For related structures, see: Ellsworth et al. (2006[Ellsworth, J. M., Su, C.-Y., Khaliq, Z., Hipp, R. E., Goforth, A. M., Smith, M. D. & zur Loye, H.-C. (2006). J. Mol. Struct. 796, 86-94.]); Fackler et al. (1992[Fackler, J. P. Jr, López, C. A., Staples, R. J., Wang, S., Winpenny, R. E. P. & Lattimer, R. P. (1992). Chem. Commun. pp. 146-148.]); Fitchett & Steel (2000[Fitchett, C. M. & Steel, P. J. (2000). Inorg. Chim. Acta, 310, 127-132.]); Hiraoka et al. (2003[Hiraoka, S., Harano, K., Tanaka, T., Shiro, M. & Shionoya, M. (2003). Angew. Chem. Int. Ed. 42, 5182-5185.]); Manzoni de Oliveira et al. (2007[Manzoni de Oliveira, G., Gris, L. R. S., Marques, L. L. & Schulz Lang, E. (2007). Z. Anorg. Allg. Chem. 633, 610-614.]); Murthy & Murthy (1976[Murthy, R. V. A. & Murthy, B. V. R. (1976). Z. Kristallogr. 144, 259-273.]); Zou et al. (2004[Zou, R.-Q., Li, J.-R., Xie, Y.-B., Zhang, R.-H. & Bu, X.-H. (2004). Cryst. Growth Des. 4, 79-84.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C7H6N2S)2]NO3·C3H6O

  • Mr = 528.35

  • Monoclinic, P 21 /n

  • a = 17.096 (4) Å

  • b = 5.8166 (12) Å

  • c = 20.421 (4) Å

  • β = 102.867 (3)°

  • V = 1979.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 100 (2) K

  • 0.20 × 0.08 × 0.05 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.786, Tmax = 0.940

  • 10935 measured reflections

  • 4046 independent reflections

  • 3594 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.133

  • S = 1.12

  • 4046 reflections

  • 259 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 1.91 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N13 2.130 (4)
Ag1—N23 2.127 (4)
N13—Ag1—N23 171.84 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H2⋯O1 0.88 1.99 2.851 (6) 165
N12—H1⋯O2ii 0.88 2.07 2.889 (6) 155
N22—H3⋯O1 0.88 2.12 2.959 (7) 158
N22—H4⋯O1iii 0.88 2.11 2.955 (6) 162
Symmetry codes: (ii) x, y-1, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Atwood & Barbour, 2003[Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3-8.]; Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

The cation in the title compound (I) (Fig. 1) is crystallographically independent and consists of two benzothiazol-2-amine ligands coordinating to an AgI ion with their thiazole imine nitrogen atoms, thus furnishing an essentially linear geometry around the metal. This is in contrast to a postulation of amino-N coordination by Tewari et al. (1991) which was based on infrared evidence. However, hydrogen bonding may have interfered in the assignment of bands. Their conclusions that nitrate is not bonded to silver and the presence of Ag···S contacts have now been verified for the structure of (I).

The nitrate counter-anion in (I) does not interact with the metal which is reflected in the close to linear N—Ag—N angle of 171.84 (17)°. Similar molecular structures wherein the AgI ion is coordinated to two thiazole imine nitrogen atoms and interacts with nitrate, have markedly bent angles of 143.2 (2) and 146.1 (2)° (Fitchett & Steel, 2000), 136.05 (17) and 130.78 (15)° (Zou et al., 2004). Perchlorate shows the same effect with an angle of 144.3 (6)° (Murthy & Murthy, 1976). Essentially linear angles of 173.5 (2), 176.1 (2) and 176.8 (2)° are, however, observed in a trinuclear silver complex (Hiraoka et al., 2003) even though trifluoromethanesulfonate or methanol additionally coordinate to the silver atoms. The Ag—N bond lengths of 2.148 (6)–2.188 (6) Å in this complex are comparable to (I) [2.130 (4) and 2.127 (4) Å], as are the appropriate bond distances in the undisturbed (i.e. the Ag centre is only coordinated by thiazole ligands and the anion does not form part of the coordination sphere) silver perchlorate complexes of bis(benzothiazol-2-ylsulfanyl)methane and 1,4-bis(benzothiazol-2-ylsulfanyl)butane reported by Zou et al. (2004) [2.136 (4) and 2.147 (4) Å in the former and 2.136 (5) Å in the latter complex].

The planes of the two 1,3-benzothiazole groups in (I) lie at an angle of 5.9 (3)° which prevents crowding between H19 and H29 that would otherwise ensue in a flat cation. A short contact between Ag1 and S11i [3.2261 (15) Å, symmetry code: (i) = x, y + 1, z] can be observed which is shorter than the sum of the van der Waals radii of the concerned atoms. Such Ag···S interactions involving thiazole rings have been observed before with distances of 3.306 Å (Ellsworth et al., 2006), 3.336 Å (Fackler Jr et al., 1992), 3.204 Å (Manzoni de Oliveira et al., 2007) and 3.543 Å (Zou et al., 2004); except for the longer distance in the last example they are comparable to (I).

The nitrate counteranion plays a crucial role in governing the crystal structure of (I). The amino groups of the cations engage in hydrogen bonds to the nitrate anion and form polar one-dimensional hydrogen bonding domains ordered around the crystallographical 21 screw axes. The apolar 1,3-benzothiazole "ends" of different columns face each other as well as the co-crystallized acetone solvent molecules (Fig. 2). The hydrogen bonding network (Fig. 1) emanates from the two amino groups of the cation which chelate O1 of the nitrate anion as well as hydrogen bonding to two other nitrates, one from the same side of the chain (via O2, related by a translation in b) and one from the other side (via O1, related by a 21 screw operation). O1 accepts three hydrogen bonds and O2 is involved in a single hydrogen bond. O3 does not exhibit hydrogen bonding which might be a cause of its larger thermal ellipsoid due to less restriction in movement.

The only possible π···π-interaction between the heteroaromatic rings is found in the 1,3-benzothiazole containing S11 and its counterpart generated by a centre of inversion [symmetry code: (v) = –x+2, –y+1, –z] with centroid–centroid distances of 3.89 Å.

The acetone solvent is highly disordered and occupies two sites in a 0.56:0.44 ratio. The carbonyl groups roughly point in opposite directions. Additional electron density peaks around the solvent as well as very high Ueq values suggest a high mobility of the acetone molecule.

Related literature top

For related literature, see: Ellsworth et al. (2006); Fackler, et al. (1992); Fitchett & Steel (2000); Hiraoka et al. (2003); Manzoni de Oliveira et al. (2007); Murthy & Murthy (1976); Tewari et al. (1991); Zou et al. (2004); de Jongh et al. (2008).

It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

The formation of crystalline (I) occurred during the reaction of [Au(NO3)(PPh3)] (0.20 g, 0.38 mmol) with benzothiazol-2-amine (57 mg, 0.38 mmol) in acetone solution (20 ml). It could be traced to the utilization of AgNO3 and [AuCl(PPh3)] in the preceding preparation of the gold reagent.

Refinement top

To obtain a satisfactory geometry, the bond lengths in both orientations of the acetone molecule were restrained to target distances (C=O 1.2 Å and C—C 1.5 Å) and the molecules themselves restrained to be flat. The occupancies for the A and B orientation refined to 0.563 (11) and 0.437 (11), respectively.

All H atoms were positioned geometrically (C—H = 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 groups, respectively; N—H = 0.92 Å) and constrained to ride on their parent atoms; Uiso(H) values were set at 1.2 times Ueq(C,N) except for methyl groups where Uiso(H) was set at 1.5 times Ueq(C).

The largest residual electron density peak of 1.91 e Å-3 is located 0.68 Å from O4A of the acetone solvent molecule, the largest hole of –1.06 e Å-3 is located 0.54 Å from O4B.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Atwood & Barbour, 2003; Barbour, 2001); software used to prepare material for publication: X-SEED (Atwood & Barbour, 2003; Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), ellipsoids are drawn at the 50% probability level; the disordered acetone molecule and hydrogen atoms not involved in hydrogen bonding are omitted. A part of the symmetry-related 1,3-benzothiazole moiety that forms the Ag1···S11i contact is shown as a stick model. Symmetry codes: (i) = x, y + 1, z; (ii) = x, y–1, z; (iii) = –x+3/2, y + 1/2, –z+1/2; (iv) = –x+3/2, y–1/2, –z+1/2.
[Figure 2] Fig. 2. Perspective view of the crystal structure along the b axis. Only hydrogen atoms involved in hydrogen bonding (represented by dotted lines) are shown.
Bis(1,3-benzothiazol-2-amine-κN3)silver(I) nitrate acetone solvate top
Crystal data top
[Ag(C7H6N2S)2]NO3·C3H6OF(000) = 1064
Mr = 528.35Dx = 1.773 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4102 reflections
a = 17.096 (4) Åθ = 2.4–26.4°
b = 5.8166 (12) ŵ = 1.27 mm1
c = 20.421 (4) ÅT = 100 K
β = 102.867 (3)°Needle, colourless
V = 1979.8 (7) Å30.20 × 0.08 × 0.05 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
4046 independent reflections
Radiation source: fine-focus sealed tube3594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1621
Tmin = 0.786, Tmax = 0.940k = 77
10935 measured reflectionsl = 2225
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0594P)2 + 10.016P]
where P = (Fo2 + 2Fc2)/3
4046 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 1.91 e Å3
12 restraintsΔρmin = 1.06 e Å3
Crystal data top
[Ag(C7H6N2S)2]NO3·C3H6OV = 1979.8 (7) Å3
Mr = 528.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.096 (4) ŵ = 1.27 mm1
b = 5.8166 (12) ÅT = 100 K
c = 20.421 (4) Å0.20 × 0.08 × 0.05 mm
β = 102.867 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
4046 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3594 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.940Rint = 0.029
10935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05612 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0594P)2 + 10.016P]
where P = (Fo2 + 2Fc2)/3
4046 reflectionsΔρmax = 1.91 e Å3
259 parametersΔρmin = 1.06 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The acetone molecule is disordered around two positions with the C—O vectors pointing in roughly opposite directions. The bonds were restrained to target distances (1.2 Å for CO and 1.5 Å for C—C) and the molecules were restrained to be flat. Due to the heavy disorder, anisotropic refinement of the molecule was not possible.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.98098 (2)0.87563 (7)0.191835 (19)0.02109 (14)
S110.98002 (9)0.2069 (2)0.06495 (7)0.0230 (3)
S210.94328 (10)1.5059 (3)0.32405 (7)0.0335 (4)
O10.7930 (2)0.7687 (7)0.1790 (2)0.0320 (9)
O20.8171 (3)0.9490 (8)0.0933 (2)0.0407 (11)
O30.7210 (3)1.0619 (9)0.1388 (3)0.0458 (12)
N10.7758 (3)0.9271 (8)0.1357 (2)0.0270 (10)
N120.8732 (3)0.4138 (8)0.1233 (2)0.0254 (10)
H20.85640.52330.14650.031*
H10.84240.29440.10940.031*
N130.9956 (3)0.5987 (7)0.1274 (2)0.0203 (9)
N220.8540 (3)1.1387 (10)0.2764 (3)0.0407 (14)
H30.84451.00600.25540.049*
H40.81651.20390.29340.049*
N230.9844 (3)1.1572 (8)0.2589 (2)0.0233 (10)
C120.9448 (3)0.4289 (9)0.1092 (2)0.0211 (11)
C141.0663 (3)0.5662 (9)0.1040 (2)0.0211 (11)
C151.0682 (3)0.3592 (9)0.0687 (2)0.0211 (11)
C161.1336 (4)0.3037 (10)0.0417 (3)0.0260 (12)
H161.13480.16320.01820.031*
C171.1968 (4)0.4568 (10)0.0498 (3)0.0291 (12)
H171.24190.42150.03160.035*
C181.1949 (4)0.6625 (10)0.0843 (3)0.0289 (12)
H181.23860.76640.08910.035*
C191.1302 (3)0.7179 (9)0.1119 (3)0.0234 (11)
H191.12970.85780.13580.028*
C220.9244 (3)1.2400 (10)0.2824 (3)0.0265 (12)
C241.0508 (3)1.3024 (9)0.2740 (3)0.0225 (11)
C251.0396 (4)1.5002 (10)0.3098 (3)0.0271 (12)
C261.1004 (4)1.6632 (11)0.3289 (3)0.0367 (15)
H261.09221.79710.35320.044*
C271.1727 (4)1.6241 (11)0.3114 (3)0.0412 (16)
H271.21511.73210.32390.049*
C281.1841 (4)1.4289 (11)0.2758 (3)0.0349 (14)
H281.23441.40510.26430.042*
C291.1238 (3)1.2679 (10)0.2568 (3)0.0257 (12)
H291.13241.13520.23220.031*
C1B1.3701 (7)0.437 (2)0.0513 (6)0.025 (3)*0.437 (11)
H1B11.38230.27390.04240.037*0.437 (11)
H1B21.39350.48880.08840.037*0.437 (11)
H1B31.31180.45860.06340.037*0.437 (11)
C2B1.4053 (8)0.5766 (19)0.0114 (6)0.048 (4)*0.437 (11)
C3B1.3956 (8)0.8295 (19)0.0124 (7)0.031 (3)*0.437 (11)
H3B11.42240.88920.05660.046*0.437 (11)
H3B21.33840.86790.00340.046*0.437 (11)
H3B31.41960.89890.02220.046*0.437 (11)
O4B1.4376 (8)0.471 (2)0.0598 (6)0.065 (4)*0.437 (11)
C1A1.3839 (5)0.3211 (14)0.0243 (4)0.015 (2)*0.563 (11)
H1A11.38260.26630.06990.022*0.563 (11)
H1A21.33160.29450.01350.022*0.563 (11)
H1A31.42540.23760.00780.022*0.563 (11)
C2A1.4039 (13)0.591 (3)0.0197 (10)0.158 (13)*0.563 (11)
C3A1.3977 (5)0.7536 (14)0.0394 (4)0.0124 (19)*0.563 (11)
H3A11.40290.91360.02600.019*0.563 (11)
H3A21.44080.71750.07850.019*0.563 (11)
H3A31.34560.73190.05110.019*0.563 (11)
O4A1.437 (2)0.641 (5)0.0618 (14)0.287 (19)*0.563 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0244 (2)0.0184 (2)0.0223 (2)0.00038 (16)0.00910 (15)0.00495 (15)
S110.0323 (7)0.0151 (6)0.0244 (7)0.0027 (5)0.0121 (6)0.0023 (5)
S210.0368 (8)0.0349 (8)0.0288 (8)0.0101 (7)0.0077 (6)0.0126 (6)
O10.034 (2)0.031 (2)0.034 (2)0.0076 (19)0.0140 (18)0.0020 (18)
O20.061 (3)0.028 (2)0.044 (3)0.010 (2)0.034 (2)0.006 (2)
O30.034 (3)0.044 (3)0.058 (3)0.012 (2)0.009 (2)0.000 (2)
N10.024 (2)0.023 (2)0.035 (3)0.0036 (19)0.008 (2)0.004 (2)
N120.029 (2)0.018 (2)0.032 (2)0.0029 (19)0.013 (2)0.0028 (19)
N130.027 (2)0.015 (2)0.020 (2)0.0036 (18)0.0089 (18)0.0026 (17)
N220.026 (3)0.055 (4)0.045 (3)0.005 (3)0.017 (2)0.023 (3)
N230.022 (2)0.026 (2)0.022 (2)0.0037 (19)0.0043 (18)0.0069 (19)
C120.033 (3)0.014 (2)0.018 (2)0.001 (2)0.010 (2)0.0057 (19)
C140.030 (3)0.017 (2)0.018 (2)0.002 (2)0.007 (2)0.0011 (19)
C150.031 (3)0.015 (2)0.019 (2)0.004 (2)0.008 (2)0.0008 (19)
C160.038 (3)0.019 (3)0.023 (3)0.002 (2)0.013 (2)0.000 (2)
C170.032 (3)0.029 (3)0.030 (3)0.003 (2)0.016 (2)0.002 (2)
C180.032 (3)0.029 (3)0.029 (3)0.008 (2)0.012 (2)0.002 (2)
C190.029 (3)0.020 (3)0.021 (3)0.003 (2)0.006 (2)0.005 (2)
C220.024 (3)0.031 (3)0.025 (3)0.004 (2)0.006 (2)0.009 (2)
C240.026 (3)0.021 (3)0.018 (2)0.004 (2)0.000 (2)0.001 (2)
C250.031 (3)0.024 (3)0.023 (3)0.006 (2)0.002 (2)0.003 (2)
C260.049 (4)0.024 (3)0.031 (3)0.002 (3)0.004 (3)0.003 (2)
C270.039 (4)0.031 (3)0.046 (4)0.011 (3)0.007 (3)0.003 (3)
C280.026 (3)0.031 (3)0.046 (4)0.002 (3)0.004 (3)0.006 (3)
C290.026 (3)0.023 (3)0.026 (3)0.002 (2)0.002 (2)0.001 (2)
Geometric parameters (Å, º) top
Ag1—N132.130 (4)C19—H190.9500
Ag1—N232.127 (4)C24—C291.384 (8)
Ag1—S11i3.2261 (15)C24—C251.400 (7)
S11—C121.758 (5)C25—C261.397 (9)
S11—C151.736 (5)C26—C271.379 (10)
S21—C221.759 (6)C26—H260.9500
S21—C251.735 (6)C27—C281.385 (9)
O1—N11.264 (6)C27—H270.9500
O2—N11.240 (6)C28—C291.383 (8)
O3—N11.233 (6)C28—H280.9500
N12—C121.321 (7)C29—H290.9500
N12—H20.8800C1B—C2B1.522 (9)
N12—H10.8800C1B—H1B10.9800
N13—C121.313 (7)C1B—H1B20.9800
N13—C141.406 (7)C1B—H1B30.9800
N22—C221.322 (8)C2B—O4B1.189 (7)
N22—H30.8800C2B—C3B1.481 (9)
N22—H40.8800C3B—H3B10.9800
N23—C221.318 (7)C3B—H3B20.9800
N23—C241.394 (7)C3B—H3B30.9800
C14—C191.387 (8)C1A—C2A1.607 (18)
C14—C151.408 (7)C1A—H1A10.9800
C15—C161.390 (8)C1A—H1A20.9800
C16—C171.381 (8)C1A—H1A30.9800
C16—H160.9500C2A—O4A1.160 (19)
C17—C181.393 (8)C2A—C3A1.553 (18)
C17—H170.9500C3A—H3A10.9800
C18—C191.385 (8)C3A—H3A20.9800
C18—H180.9500C3A—H3A30.9800
N13—Ag1—N23171.84 (17)N23—C24—C25114.4 (5)
N23—Ag1—S11i92.96 (13)C26—C25—C24121.6 (6)
N13—Ag1—S11i86.30 (12)C26—C25—S21128.0 (5)
C15—S11—C1289.8 (3)C24—C25—S21110.4 (4)
C25—S21—C2288.9 (3)C27—C26—C25118.0 (6)
O1—N1—O2118.8 (5)C27—C26—H26121.0
O1—N1—O3119.3 (5)C25—C26—H26121.0
O2—N1—O2121.8 (5)C26—C27—C28120.7 (6)
C12—N12—H2120.0C26—C27—H27119.7
C12—N12—H1120.0C28—C27—H27119.7
H2—N12—H1120.0C29—C28—C27121.3 (6)
C12—N13—C14111.6 (4)C29—C28—H28119.4
C12—N13—Ag1125.6 (4)C27—C28—H28119.4
C14—N13—Ag1122.6 (3)C28—C29—C24119.2 (5)
C22—N22—H3120.0C28—C29—H29120.4
C22—N22—H4120.0C24—C29—H29120.4
H3—N22—H4120.0C2B—C1B—H1B1109.5
C22—N23—C24111.1 (5)C2B—C1B—H1B2109.5
C22—N23—Ag1127.2 (4)H1B1—C1B—H1B2109.5
C24—N23—Ag1120.9 (3)C2B—C1B—H1B3109.5
N13—C12—N12125.1 (5)H1B1—C1B—H1B3109.5
N13—C12—S11114.6 (4)H1B2—C1B—H1B3109.5
N12—C12—S11120.2 (4)O4B—C2B—C3B122.3 (12)
C19—C14—N13126.2 (5)O4B—C2B—C1B116.5 (11)
C19—C14—C15119.7 (5)C3B—C2B—C1B121.1 (11)
N13—C14—C15114.1 (5)C2B—C3B—H3B1109.5
C16—C15—C14121.0 (5)C2B—C3B—H3B2109.5
C16—C15—S11129.2 (4)H3B1—C3B—H3B2109.5
C14—C15—S11109.9 (4)C2B—C3B—H3B3109.5
C17—C16—C15118.7 (5)H3B1—C3B—H3B3109.5
C17—C16—H16120.7H3B2—C3B—H3B3109.5
C15—C16—H16120.7C2A—C1A—H1A1109.5
C16—C17—C18120.5 (5)C2A—C1A—H1A2109.5
C16—C17—H17119.8H1A1—C1A—H1A2109.5
C18—C17—H17119.8C2A—C1A—H1A3109.5
C19—C18—C17121.1 (5)H1A1—C1A—H1A3109.5
C19—C18—H18119.4H1A2—C1A—H1A3109.5
C17—C18—H18119.4O4A—C2A—C3A124 (2)
C18—C19—C14119.0 (5)O4A—C2A—C1A109 (2)
C18—C19—H19120.5C3A—C2A—C1A126.1 (16)
C14—C19—H19120.5C2A—C3A—H3A1109.5
N23—C22—N22124.8 (5)C2A—C3A—H3A2109.5
N23—C22—S21115.1 (4)H3A1—C3A—H3A2109.5
N22—C22—S21120.1 (4)C2A—C3A—H3A3109.5
C29—C24—N23126.3 (5)H3A1—C3A—H3A3109.5
C29—C24—C25119.2 (5)H3A2—C3A—H3A3109.5
S11i—Ag1—N13—C12117.6 (4)C15—C14—C19—C180.2 (8)
S11i—Ag1—N13—C1468.7 (4)C24—N23—C22—N22179.3 (6)
S11i—Ag1—N23—C22103.0 (5)Ag1—N23—C22—N2211.1 (9)
S11i—Ag1—N23—C2465.7 (4)C24—N23—C22—S211.0 (6)
C14—N13—C12—N12179.2 (5)Ag1—N23—C22—S21168.6 (3)
Ag1—N13—C12—N126.4 (7)C25—S21—C22—N231.2 (5)
C14—N13—C12—S112.5 (6)C25—S21—C22—N22179.1 (5)
C15—S11—C12—N132.1 (4)C22—N23—C24—C29180.0 (5)
C15—S11—C12—N12179.6 (5)Ag1—N23—C24—C299.6 (7)
C12—N13—C14—C19177.0 (5)C22—N23—C24—C250.2 (7)
Ag1—N13—C14—C198.5 (7)Ag1—N23—C24—C25170.2 (4)
C12—N13—C14—C151.7 (6)C29—C24—C25—C260.2 (8)
Ag1—N13—C14—C15172.8 (3)N23—C24—C25—C26179.9 (5)
C19—C14—C15—C160.4 (8)C29—C24—C25—S21179.1 (4)
N13—C14—C15—C16179.2 (5)N23—C24—C25—S210.7 (6)
C19—C14—C15—S11178.6 (4)C22—S21—C25—C26179.7 (6)
N13—C14—C15—S110.2 (6)C22—S21—C25—C241.0 (4)
C12—S11—C15—C16177.9 (5)C24—C25—C26—C270.1 (9)
C12—S11—C15—C141.0 (4)S21—C25—C26—C27179.3 (5)
C14—C15—C16—C170.6 (8)C25—C26—C27—C280.2 (9)
S11—C15—C16—C17178.2 (4)C26—C27—C28—C290.0 (10)
C15—C16—C17—C180.1 (8)C27—C28—C29—C240.3 (9)
C16—C17—C18—C190.5 (9)N23—C24—C29—C28179.8 (5)
C17—C18—C19—C140.7 (9)C25—C24—C29—C280.5 (8)
N13—C14—C19—C18178.4 (5)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H2···O10.881.992.851 (6)165
N12—H1···O2ii0.882.072.889 (6)155
N22—H3···O10.882.122.959 (7)158
N22—H4···O1iii0.882.112.955 (6)162
Symmetry codes: (ii) x, y1, z; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C7H6N2S)2]NO3·C3H6O
Mr528.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)17.096 (4), 5.8166 (12), 20.421 (4)
β (°) 102.867 (3)
V3)1979.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.20 × 0.08 × 0.05
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.786, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
10935, 4046, 3594
Rint0.029
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.133, 1.12
No. of reflections4046
No. of parameters259
No. of restraints12
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0594P)2 + 10.016P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.91, 1.06

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Atwood & Barbour, 2003; Barbour, 2001).

Selected geometric parameters (Å, º) top
Ag1—N132.130 (4)O1—N11.264 (6)
Ag1—N232.127 (4)O2—N11.240 (6)
Ag1—S11i3.2261 (15)O3—N11.233 (6)
N13—Ag1—N23171.84 (17)O1—N1—O3119.3 (5)
O1—N1—O2118.8 (5)O2—N1—O2121.8 (5)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H2···O10.881.992.851 (6)164.8
N12—H1···O2ii0.882.072.889 (6)155.2
N22—H3···O10.882.122.959 (7)158.3
N22—H4···O1iii0.882.112.955 (6)162.2
Symmetry codes: (ii) x, y1, z; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the National Research Foundation (NRF) of South Africa for financial support.

References

First citationAtwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2002). SADABS and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationde Jongh, L. (2008). MSc Thesis, pp. 59–62. University of Stellenbosch, South Africa, pp. 59–62.  Google Scholar
First citationEllsworth, J. M., Su, C.-Y., Khaliq, Z., Hipp, R. E., Goforth, A. M., Smith, M. D. & zur Loye, H.-C. (2006). J. Mol. Struct. 796, 86–94.  Web of Science CSD CrossRef CAS Google Scholar
First citationFackler, J. P. Jr, López, C. A., Staples, R. J., Wang, S., Winpenny, R. E. P. & Lattimer, R. P. (1992). Chem. Commun. pp. 146–148.  CrossRef Google Scholar
First citationFitchett, C. M. & Steel, P. J. (2000). Inorg. Chim. Acta, 310, 127–132.  Web of Science CSD CrossRef CAS Google Scholar
First citationHiraoka, S., Harano, K., Tanaka, T., Shiro, M. & Shionoya, M. (2003). Angew. Chem. Int. Ed. 42, 5182–5185.  Web of Science CSD CrossRef CAS Google Scholar
First citationManzoni de Oliveira, G., Gris, L. R. S., Marques, L. L. & Schulz Lang, E. (2007). Z. Anorg. Allg. Chem. 633, 610–614.  CAS Google Scholar
First citationMurthy, R. V. A. & Murthy, B. V. R. (1976). Z. Kristallogr. 144, 259–273.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTewari, S. P., Tripathi, P. & Sinha, A. I. P. (1991). Asian J. Chem. 3, 124–127.  CAS Google Scholar
First citationZou, R.-Q., Li, J.-R., Xie, Y.-B., Zhang, R.-H. & Bu, X.-H. (2004). Cryst. Growth Des. 4, 79–84.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m265-m266
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds