organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(1,10-Phenanthrolin-2-ylimino)di­ethanol

aChemistry and Chemical Engineering College, Shanxi Datong University, Datong 037009, People's Republic of China
*Correspondence e-mail: jinminli1957@yahoo.com.cn

(Received 3 February 2009; accepted 11 February 2009; online 18 February 2009)

In the title compound, C16H17N3O2, symmetry-related mol­ecules are linked into one-dimensional chains along the a axis by a combination of inter­molecular O—H⋯N and O—H⋯O hydrogen bonds and weak ππ stacking inter­actions with a centroid–centroid distance of 3.5494 (12) Å.

Related literature

For recent crystal structure reports on the complexes formed with derivatives of 1,10-phenanthroline, see for example: Li et al. (2008[Li, H., Hu, T. Q. & Zhang, S. G. (2008). Acta Cryst. E64, m771.]) and Zhang et al. (2008[Zhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O2

  • Mr = 283.33

  • Monoclinic, P 21 /c

  • a = 4.8480 (10) Å

  • b = 14.854 (3) Å

  • c = 18.858 (4) Å

  • β = 93.523 (3)°

  • V = 1355.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.54 × 0.32 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.951, Tmax = 0.982

  • 7520 measured reflections

  • 2765 independent reflections

  • 2149 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.132

  • S = 1.03

  • 2765 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H5⋯O1i 0.91 1.91 2.8254 (17) 177
O1—H4⋯N1ii 0.83 2.08 2.8676 (18) 158
Symmetry codes: (i) -x-1, -y+2, -z; (ii) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play a vital role in a modern coordination chemistry and a number of complexes have been published with these types of compounds as ligands [see for example the recent publications by Li et al. (2008) and Zhang et al. (2008)]. An interest in designing new derivatives led to the synthesis the title compound, (I), and its crystal structure is reported herein.

The molecular structure of (I) is shown in Fig. 1. In the crystal structure, intermolecular O—H···N and O—H···O hydrogen bonds (see Table 1) connect symmetry related molecules to form 1-D chains along the a axis (see Fig. 2). In addition, within these chain there are weak π-π stacking interactions between symmetry related pyridyl rings, with the relevant distances being Cg1···Cg2iii = 3.5494 (12) Å, Cg1···Cg2iiiperp = 3.464 Å and α = 1.48° [symmetry code (iii) 1+x, y, z; Cg1 and Cg2 are the centroids of the C6C7C10-C12/N1 and C1—C5/N2 rings, respectively; Cg1···Cg2iiiperp is the perpendicular distance from ring Cg1 to ring Cg2iii; α is the dihedral angle between ring plane Cg1 and ring plane Cg2iii].

Related literature top

For recent crystal structure reports on the complexes formed with derivatives of 1,10-phenanthroline , see for example: Li et al. (2008) and Zhang et al. (2008).

Experimental top

2-Diethanolamine-1,10-phenanthroline (0.0523 g, 0.185 mmol) was dissolved into 10 ml methanol and the yellow single crystals were obtained after the solution had been allowed to stand at room temperature for one week.

Refinement top

The H atoms of hydroxyl groups were found in a difference Fourier map and were included in 'as found' positions with d(O—H) = 0.83 & 0.91 Å; all other H atoms were placed in calculated positions with C—H = 0.93–0.97 Å. All H atoms were refined as riding, with Uiso(H) = 1.5eq(O) for hydroxyl group and Uiso(H) = 1.2Ueq(C) for other groups.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds (dashed lines) between symmetry realted molecules which form a one-dimensional chain along the a axis.
2,2'-(1,10-Phenanthrolin-2-ylimino)diethanol top
Crystal data top
C16H17N3O2F(000) = 600
Mr = 283.33Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2381 reflections
a = 4.848 (1) Åθ = 2.6–27.3°
b = 14.854 (3) ŵ = 0.09 mm1
c = 18.858 (4) ÅT = 298 K
β = 93.523 (3)°Block, yellow
V = 1355.5 (5) Å30.54 × 0.32 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2765 independent reflections
Radiation source: fine-focus sealed tube2149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 56
Tmin = 0.951, Tmax = 0.982k = 1218
7520 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.108P]
where P = (Fo2 + 2Fc2)/3
2765 reflections(Δ/σ)max = 0.008
190 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H17N3O2V = 1355.5 (5) Å3
Mr = 283.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.848 (1) ŵ = 0.09 mm1
b = 14.854 (3) ÅT = 298 K
c = 18.858 (4) Å0.54 × 0.32 × 0.20 mm
β = 93.523 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2765 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2149 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.982Rint = 0.030
7520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2765 reflectionsΔρmin = 0.16 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1483 (3)0.89542 (10)0.18581 (7)0.0333 (3)
C20.2322 (3)0.81999 (11)0.22608 (8)0.0408 (4)
H20.36970.78140.20770.049*
C30.1090 (4)0.80542 (11)0.29126 (8)0.0439 (4)
H30.16450.75690.31810.053*
C40.1020 (3)0.86265 (10)0.31895 (8)0.0391 (4)
C50.1770 (3)0.93444 (10)0.27517 (7)0.0336 (3)
C60.3910 (3)0.99566 (10)0.30193 (7)0.0356 (4)
C70.5185 (3)0.98199 (12)0.37060 (8)0.0460 (4)
C80.4363 (4)0.90765 (14)0.41232 (9)0.0597 (5)
H80.52270.89800.45710.072*
C90.2361 (4)0.85156 (13)0.38776 (9)0.0553 (5)
H90.18330.80430.41630.066*
C100.7237 (4)1.04302 (14)0.39446 (10)0.0593 (5)
H100.81221.03620.43930.071*
C110.7935 (4)1.11242 (14)0.35196 (11)0.0598 (5)
H110.92891.15360.36730.072*
C120.6584 (4)1.12040 (12)0.28535 (10)0.0494 (4)
H120.70791.16790.25670.059*
C130.1736 (3)0.99054 (11)0.08028 (7)0.0387 (4)
H13A0.24370.98410.03130.046*
H13B0.02640.98750.08110.046*
C140.2546 (3)1.08165 (11)0.10638 (8)0.0402 (4)
H14A0.16741.09120.15350.048*
H14B0.18561.12730.07520.048*
C150.4906 (3)0.85897 (10)0.08751 (8)0.0392 (4)
H15A0.60070.89550.05380.047*
H15B0.61070.83890.12360.047*
C160.3880 (4)0.77747 (11)0.04926 (8)0.0465 (4)
H16A0.30100.73660.08400.056*
H16B0.54520.74650.02620.056*
N10.4640 (3)1.06489 (9)0.25999 (7)0.0415 (3)
N20.0550 (2)0.94980 (8)0.20978 (6)0.0333 (3)
N30.2733 (3)0.91507 (8)0.12111 (6)0.0374 (3)
O10.5458 (2)1.09241 (8)0.10935 (6)0.0499 (3)
H40.58261.07600.14990.075*
O20.1971 (3)0.79774 (9)0.00230 (6)0.0586 (4)
H50.28380.83130.03770.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0325 (8)0.0333 (8)0.0345 (7)0.0036 (6)0.0044 (6)0.0001 (6)
C20.0433 (9)0.0355 (8)0.0436 (8)0.0043 (7)0.0027 (7)0.0017 (7)
C30.0524 (10)0.0343 (9)0.0457 (9)0.0012 (7)0.0090 (8)0.0101 (7)
C40.0435 (9)0.0375 (8)0.0366 (8)0.0056 (7)0.0032 (7)0.0059 (6)
C50.0338 (8)0.0350 (8)0.0322 (7)0.0063 (6)0.0043 (6)0.0014 (6)
C60.0331 (9)0.0370 (8)0.0369 (8)0.0080 (6)0.0041 (6)0.0032 (6)
C70.0436 (10)0.0529 (10)0.0407 (8)0.0079 (8)0.0035 (7)0.0069 (7)
C80.0682 (13)0.0704 (13)0.0385 (9)0.0051 (10)0.0131 (8)0.0081 (8)
C90.0676 (13)0.0566 (11)0.0411 (9)0.0044 (9)0.0018 (8)0.0161 (8)
C100.0505 (11)0.0736 (14)0.0522 (10)0.0062 (10)0.0103 (8)0.0156 (9)
C110.0466 (11)0.0627 (12)0.0694 (12)0.0077 (9)0.0009 (9)0.0228 (10)
C120.0458 (10)0.0443 (10)0.0589 (10)0.0045 (8)0.0096 (8)0.0127 (8)
C130.0360 (9)0.0494 (9)0.0306 (7)0.0033 (7)0.0005 (6)0.0062 (6)
C140.0358 (9)0.0421 (9)0.0423 (8)0.0042 (7)0.0003 (7)0.0088 (6)
C150.0342 (9)0.0430 (9)0.0398 (8)0.0002 (7)0.0022 (6)0.0012 (6)
C160.0522 (11)0.0417 (9)0.0448 (9)0.0025 (7)0.0047 (8)0.0014 (7)
N10.0383 (8)0.0410 (7)0.0455 (7)0.0010 (6)0.0062 (6)0.0048 (6)
N20.0330 (7)0.0344 (7)0.0327 (6)0.0026 (5)0.0039 (5)0.0027 (5)
N30.0404 (7)0.0374 (7)0.0337 (6)0.0034 (6)0.0025 (5)0.0031 (5)
O10.0394 (7)0.0602 (8)0.0502 (7)0.0085 (5)0.0040 (5)0.0163 (5)
O20.0552 (8)0.0697 (9)0.0514 (7)0.0186 (6)0.0069 (6)0.0034 (6)
Geometric parameters (Å, º) top
C1—N21.3319 (19)C11—C121.386 (3)
C1—N31.3603 (18)C11—H110.9300
C1—C21.427 (2)C12—N11.320 (2)
C2—C31.351 (2)C12—H120.9300
C2—H20.9300C13—N31.4590 (18)
C3—C41.406 (2)C13—C141.501 (2)
C3—H30.9300C13—H13A0.9700
C4—C51.410 (2)C13—H13B0.9700
C4—C91.425 (2)C14—O11.4255 (19)
C5—N21.3539 (18)C14—H14A0.9700
C5—C61.447 (2)C14—H14B0.9700
C6—N11.3573 (19)C15—N31.4574 (19)
C6—C71.415 (2)C15—C161.509 (2)
C7—C101.400 (3)C15—H15A0.9700
C7—C81.427 (3)C15—H15B0.9700
C8—C91.340 (3)C16—O21.415 (2)
C8—H80.9300C16—H16A0.9700
C9—H90.9300C16—H16B0.9700
C10—C111.361 (3)O1—H40.8330
C10—H100.9300O2—H50.9147
N2—C1—N3116.99 (13)N1—C12—H12117.9
N2—C1—C2121.66 (13)C11—C12—H12117.9
N3—C1—C2121.35 (14)N3—C13—C14114.71 (12)
C3—C2—C1119.07 (14)N3—C13—H13A108.6
C3—C2—H2120.5C14—C13—H13A108.6
C1—C2—H2120.5N3—C13—H13B108.6
C2—C3—C4120.81 (14)C14—C13—H13B108.6
C2—C3—H3119.6H13A—C13—H13B107.6
C4—C3—H3119.6O1—C14—C13113.19 (13)
C3—C4—C5116.60 (14)O1—C14—H14A108.9
C3—C4—C9123.31 (15)C13—C14—H14A108.9
C5—C4—C9120.08 (15)O1—C14—H14B108.9
N2—C5—C4123.15 (14)C13—C14—H14B108.9
N2—C5—C6118.39 (13)H14A—C14—H14B107.8
C4—C5—C6118.45 (13)N3—C15—C16114.57 (13)
N1—C6—C7121.82 (14)N3—C15—H15A108.6
N1—C6—C5118.68 (13)C16—C15—H15A108.6
C7—C6—C5119.50 (14)N3—C15—H15B108.6
C10—C7—C6117.59 (16)C16—C15—H15B108.6
C10—C7—C8122.76 (16)H15A—C15—H15B107.6
C6—C7—C8119.65 (15)O2—C16—C15113.97 (13)
C9—C8—C7120.76 (15)O2—C16—H16A108.8
C9—C8—H8119.6C15—C16—H16A108.8
C7—C8—H8119.6O2—C16—H16B108.8
C8—C9—C4121.54 (16)C15—C16—H16B108.8
C8—C9—H9119.2H16A—C16—H16B107.7
C4—C9—H9119.2C12—N1—C6117.92 (14)
C11—C10—C7119.93 (17)C1—N2—C5118.67 (12)
C11—C10—H10120.0C1—N3—C15122.52 (12)
C7—C10—H10120.0C1—N3—C13119.64 (12)
C10—C11—C12118.52 (17)C15—N3—C13117.64 (11)
C10—C11—H11120.7C14—O1—H4105.8
C12—C11—H11120.7C16—O2—H5109.1
N1—C12—C11124.22 (18)
N2—C1—C2—C32.5 (2)C6—C7—C10—C110.1 (3)
N3—C1—C2—C3177.39 (14)C8—C7—C10—C11179.74 (17)
C1—C2—C3—C41.0 (2)C7—C10—C11—C120.3 (3)
C2—C3—C4—C50.4 (2)C10—C11—C12—N10.2 (3)
C2—C3—C4—C9178.88 (15)N3—C13—C14—O156.55 (17)
C3—C4—C5—N20.5 (2)N3—C15—C16—O254.91 (18)
C9—C4—C5—N2178.84 (14)C11—C12—N1—C60.2 (2)
C3—C4—C5—C6179.25 (13)C7—C6—N1—C120.4 (2)
C9—C4—C5—C60.1 (2)C5—C6—N1—C12179.63 (13)
N2—C5—C6—N11.15 (19)N3—C1—N2—C5177.46 (12)
C4—C5—C6—N1179.99 (13)C2—C1—N2—C52.4 (2)
N2—C5—C6—C7178.92 (13)C4—C5—N2—C11.0 (2)
C4—C5—C6—C70.1 (2)C6—C5—N2—C1177.83 (12)
N1—C6—C7—C100.3 (2)N2—C1—N3—C15177.43 (12)
C5—C6—C7—C10179.75 (14)C2—C1—N3—C152.7 (2)
N1—C6—C7—C8179.37 (14)N2—C1—N3—C132.72 (19)
C5—C6—C7—C80.5 (2)C2—C1—N3—C13177.39 (13)
C10—C7—C8—C9179.05 (18)C16—C15—N3—C181.85 (17)
C6—C7—C8—C91.3 (3)C16—C15—N3—C1392.96 (16)
C7—C8—C9—C41.3 (3)C14—C13—N3—C175.61 (17)
C3—C4—C9—C8179.92 (17)C14—C13—N3—C15109.43 (15)
C5—C4—C9—C80.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H5···O1i0.911.912.8254 (17)177
O1—H4···N1ii0.832.082.8676 (18)158
Symmetry codes: (i) x1, y+2, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H17N3O2
Mr283.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.848 (1), 14.854 (3), 18.858 (4)
β (°) 93.523 (3)
V3)1355.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.54 × 0.32 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.951, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7520, 2765, 2149
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.132, 1.03
No. of reflections2765
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H5···O1i0.911.912.8254 (17)176.7
O1—H4···N1ii0.832.082.8676 (18)157.5
Symmetry codes: (i) x1, y+2, z; (ii) x1, y, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H., Hu, T. Q. & Zhang, S. G. (2008). Acta Cryst. E64, m771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. G., Hu, T. Q. & Li, H. (2008). Acta Cryst. E64, m769.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds