organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1,2:5,6-Di-O-iso­propyl­­idene-α-D-ribo-hexo­furanos-3-ulose O-benzyl­oxime

aDepartment of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, and bDivision of Structural Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
*Correspondence e-mail: lerik@struc.su.se

(Received 13 February 2009; accepted 20 February 2009; online 28 February 2009)

The title compound, C19H25NO6, is a Z diastereomer in which the phenyl ring of the 3-benzyl­oxime substituent and the 5,6-O-isopropyl­idene acetal are both located on the Si-face of the C=N double bond. Inter­molecular C—H⋯O inter­actions result in helical chains along the b axis of the monoclinic unit cell.

Related literature

For background to sugar-based oxime derivatives, see: Tronchet et al. (1979[Tronchet, J. M. J., Habashi, F., Martin, O. R., Bonenfant, A. P., Baehler, B. & Zumwald, J.-B. (1979). Helv. Chim. Acta, 62, 894-898.], 1981[Tronchet, J. M. J., Winter-Mihaly, E., Habashi, F., Schwarzenbach, D., Likić, U. & Geoffroy, M. (1981). Helv. Chim. Acta, 64, 610-616.], 1989[Tronchet, J. M. J., Bizzozero, N., Koufaki, M., Habashi, F. & Geoffroy, M. (1989). J. Chem. Res. (M), 334, 2601-2619.]); Peri et al. (2004[Peri, F., Jiménez-Barbero, J., García-Aparicio, V., Tvaroška, I. & Nicotra, F. (2004). Chem. Eur. J. 10, 1433-1444.]). For the synthesis, see: Plenkiewicz et al. (1974[Plenkiewicz, J., Szarek, W. A., Sipos, P. A. & Phibbs, M. K. (1974). Synthesis, pp. 56-58.]); Fernández-González & Alonso (2006[Fernández-González, M. & Alonso, R. (2006). J. Org. Chem. 71, 6767-6775.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For C–H⋯O inter­actions, see: Gatti et al. (2002[Gatti, C., May, E., Destro, R. & Cargnoni, F. (2002). J. Phys. Chem. A, 106, 2707-2720.]). For the synthesis of a reactant, see: Shing et al. (1996[Shing, T. K. M., Wong, C.-H. & Yip, T. (1996). Tetrahedron Asymmetry, 7, 1323-1340.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25NO6

  • Mr = 363.40

  • Monoclinic, P 21

  • a = 11.8012 (12) Å

  • b = 6.0019 (5) Å

  • c = 13.7021 (11) Å

  • β = 95.122 (11)°

  • V = 966.64 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.05 × 0.04 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: none

  • 9449 measured reflections

  • 2558 independent reflections

  • 2023 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.131

  • S = 0.99

  • 2558 reflections

  • 235 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.98 2.43 3.386 (3) 164
C10—H10A⋯O3ii 0.97 2.46 3.387 (3) 160
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z]; (ii) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 1997[Stoe & Cie (1997). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1990[Siemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), XP and SHELXL97.

Supporting information


Comment top

Oxime derivatives of carbohydrates are important precursors for preparation of monosaccharide building blocks in disaccharide mimic synthesis. (Tronchet et al., 1979, 1981,1989; Peri et al., 2004)

The title compound (I) can be easily synthesized by condensation of the corresponding keto sugar with O-benzylhydroxylamine hydrochloride in pyridine in good yield. (Plenkiewicz et al., 1974; Fernández-González & Alonso, 2006) Crystallization from pentane/ethyl acetate gave exclusively the Z diastereomer of I. The crystal structure of I is depicted in Fig. 1 and reveals a twist form for the sugar furanose ring (O1, C1, C2, C3, C4) according to the puckering parameters q2 = 0.257 (2) Å and Φ2 = 164.8 (5)°. (Cremer & Pople, 1975) This conformation is also observed for the 1,2-O-isopropylidene (O2, C1, C2, O3, C7; q2 = 0.237 (2) Å, Φ2 = 162.1 (6)°) and the 5,6-O-isopropylidene acetal (O5, C5, C6, O6, C17; q2 = 0.310 (3) Å, Φ2 = 15.4 (6)°). The phenyl ring of the 3-benzyloxime substituent at C3 and the furanose mean plane (O1, C1 to C4) are twisted to each other by 87.2 (2)° indicated by an N1—O4—C10—C11 torsion angle of -74.9 (3)°. The Re-face of the C=N double bond is shielded by a methyl group of the 1,2-O-isopropylidene entity, while the Si-face is shielded by the benzyl group of the 3-benzyloxime substituent and the 5,6-O-isopropylidene protecting group. Assuming that the latter two groups are able to rotate in solution and the 1,2-acetonide is rigid, a nucleophilic attack from the Si-face should be preferred.

The donor-acceptor distance between O3 and the benzylic carbon is 3.387 (3) Å and is therefore in the range of C—H···O hydrogen bonds. (Gatti et al., 2002) Furthermore, H5 is hydrogen bonded to O2 of an adjacent molecule with a donor-acceptor distance of 3.386 (3) Å. These weak intermolecular interactions lead to chains of molecules of I featuring a twofold screw symmetry along the crystallographic b axis (see Fig. 2).

Related literature top

For background to sugar-based oxime derivatives, see: Tronchet et al. (1979, 1981, 1989); Peri et al. (2004). For the synthesis, see: Plenkiewicz et al. (1974); Fernández-González & Alonso (2006). For ring puckering analysis, see: Cremer & Pople (1975). For C–H···O interactions, see: Gatti et al. (2002). For the synthesis of a reactant, see: Shing et al. (1996).

Experimental top

All substances were purchased from commercial suppliers and used without further purification. Pyridine was dried over molecular sieves 4 Å. 1,2:5,6-Di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose was obtained from 1,2:5,6-di-O-isopropylidene-α-D-glucose (Shing et al., 1996)

Melting points are given uncorrected and were determined with a Gallenkamp melting point apparatus. Mass spectra were measured on a Bruker Daltonics MicroTOF spectrometer. Optical rotations were determined using a Perkin-Elmer 241 polarimeter with a path length of 1 dm (Concentrations are given in g/100 ml.). 1H NMR, 13C NMR, 1H,1H COSY and 1H,13C HSQC experiments were carried out on a Bruker 400 MHz s pectrometer. Chemical shifts are referenced for 1H to CHCl3 at 7.26 p.p.m. and for 13C to CDCl3 at 77.03 p.p.m.. Multiplicities are quoted as singlet (s), doublet (d), doublet of doublets (dd), doublet of doublet of doublets (ddd) and multiplet (m). Coupling constants J are determined from zero-filled, resolution enhanced spectra.

(Z)-1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranos-3- ulose O-benzyloxime (I): 1,2:5,6-Di-O-isopropylidene-α-D-ribo-hexofuranos-3-ulose (2.96 g, 11.5 mmol) was dissolved in pyridine (20 ml). After addition of O-benzylhydroxylamine hydrochloride (2.75 g, 17.2 mmol) the mixture was stirred at room temperature under nitrogen. After 26 h, TLC (CH2Cl2/ethyl acetate, 20:1) showed conversion of the starting material (Rf = 1/5) to a major product (Rf = 1/2). The mixture was concentrated in vacuo. The resulting white solid was dissolved in CH2Cl2/ethyl acetate. The organic phase was washed three times with water, dried over Na2SO4, filtered and concentrated in vacuo. Recrystallization from pentane/ethyl acetate (2:1) at 246 K gave (Z)-1,2:5,6-di-O-isopropylidene-α-D-ribo-hexofuranos-3- ulose O-benzyloxime (I) as colourless crystals. After filtration the product was dried in vacuo at 298 K. Yield: 3.10 g (74%). Single crystals suitable for X-ray determination were obtained after one week of gas diffusion of pentane into a solution of I (20 mg, 0.06 mmol) in ethyl acetate (0.5 ml). M.p. = 402–404 K (pentane/ethyl acetate). [α]D21 = +201 (c = 1.0 in CHCl3). 1H NMR (400 MHz, CDCl3, 298 K): 1.28, 1.33, 1.43 and 1.49 (4 s, 12H, H methyl), 3.77 (dd, 2J66' = 8.3 Hz, 3J65 = 7.2 Hz, 1H, H6), 3.84 (dd, 3J6'5 = 6.8 Hz, 1H, H6'), 4.36 (ddd, 3J54 = 2.6 Hz, 1H, H5), 4.84 (dd, 4J42 = 1.3 Hz, 1H, H4), 5.16 (dd, 1H, H2), 5.20 (2H, H10 and H10'), 5.95 (d, 3J12 = 4.4 Hz, 1H, H1), 7.29–7.36 (m, 5H, H Ph) p.p.m.. 13C NMR (100 MHz, CDCl3, 298 K): 25.5, 26.0, 27.3 and 27.4 (4 × q, C8, C9, C18 and C19), 64.2 (t, C6), 74.8 (d, C2), 76.9 (× 2) and 77.0 (2 × d and 1 × t, C4, C5 and C10), 104.8 (d, C1), 109.8 and 113.7 (2 × s, C7 and C17), 128.0, 128.2, 128.4, 137.6 and 157.0 (2 × s and 5 × d, C3 and C Ph) p.p.m.. ESI-HRMS: m/z calculated for C19H25NO6 (MNa+) 386.1574, found 386.1579. C19H25NO6 (363.40 g mol-1): calculated C 62.80, H 6.93, N 3.85%; found C 63.08, H 7.45, N 3.89%.

Refinement top

H atoms were positioned geometrically and constrained to ride on the parent atom. The C—H bond distances are 0.98 Å for CH3, 0.99 Å for CH2 and 1.00 Å for CH. The Uiso(H) values were set at 1.5Ueq(C,O) for the CH3 groups and 1.2Ueq(C) for all other H atoms. The value of the Flack parameter was not meaningful owing to the absence of significant anomalous scatterers, thus the data mere merged using MERG 4 in SHELXL. The absolute configuration was assigned by reference to the chiral starting material.

Computing details top

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 1997); cell refinement: CELL in IPDS Software (Stoe & Cie, 1997); data reduction: INTEGRATE in IPDS Software (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: PLATON (Spek, 2009), XP (Siemens, 1990) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I) with displacement ellipsoids at 30% probability and atom-numbering scheme.
[Figure 2] Fig. 2. Molecules of (I) linked by C–H···O interactions resulting in chains with twofold screw symmetry along the crystallographic b axis.
(Z)-1,2:5,6-Di-O-isopropylidene-α-D-ribo- hexofuranos-3-ulose O-benzyloxime top
Crystal data top
C19H25NO6F(000) = 388
Mr = 363.40Dx = 1.249 Mg m3
Monoclinic, P21Melting point: 403(1) K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 11.8012 (12) ÅCell parameters from 1353 reflections
b = 6.0019 (5) Åθ = 1.9–28.2°
c = 13.7021 (11) ŵ = 0.09 mm1
β = 95.122 (11)°T = 293 K
V = 966.64 (15) Å3Prism, colourless
Z = 20.30 × 0.05 × 0.04 mm
Data collection top
Stoe IPDS
diffractometer
2023 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.104
Graphite monochromatorθmax = 28.2°, θmin = 3.0°
Detector resolution: 6.0 pixels mm-1h = 1515
ϕ scansk = 77
9449 measured reflectionsl = 1817
2558 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0808P)2]
where P = (Fo2 + 2Fc2)/3
2558 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C19H25NO6V = 966.64 (15) Å3
Mr = 363.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.8012 (12) ŵ = 0.09 mm1
b = 6.0019 (5) ÅT = 293 K
c = 13.7021 (11) Å0.30 × 0.05 × 0.04 mm
β = 95.122 (11)°
Data collection top
Stoe IPDS
diffractometer
2023 reflections with I > 2σ(I)
9449 measured reflectionsRint = 0.104
2558 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.131H-atom parameters constrained
S = 0.99Δρmax = 0.31 e Å3
2558 reflectionsΔρmin = 0.29 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06053 (17)0.2232 (4)0.27810 (14)0.0389 (4)
O10.02900 (13)0.5554 (3)0.09073 (11)0.0389 (4)
O20.11981 (15)0.8375 (3)0.18283 (13)0.0445 (4)
O30.07981 (16)0.6561 (4)0.32044 (12)0.0510 (5)
O40.06093 (18)0.2884 (3)0.37689 (13)0.0477 (4)
O50.21517 (14)0.5609 (3)0.09506 (14)0.0469 (4)
O60.34050 (19)0.2785 (5)0.0706 (3)0.1008 (12)
C10.01554 (19)0.7319 (4)0.15833 (17)0.0371 (5)
H10.04230.83850.13210.044*
C20.01695 (19)0.6276 (4)0.25278 (17)0.0363 (5)
H20.08410.70010.27580.044*
C30.04108 (17)0.3891 (4)0.22521 (16)0.0325 (4)
C40.03742 (18)0.3679 (4)0.11580 (16)0.0334 (4)
H40.00120.22940.10040.040*
C50.15390 (19)0.3778 (4)0.05929 (18)0.0384 (5)
H50.14550.39850.01060.046*
C60.2320 (2)0.1834 (5)0.0731 (3)0.0554 (7)
H6A0.22830.07540.02080.067*
H6B0.21190.11030.13540.067*
C70.1722 (2)0.7382 (5)0.27004 (19)0.0457 (6)
C80.2295 (3)0.9206 (6)0.3320 (3)0.0664 (9)
H8A0.26560.85760.39130.100*
H8B0.17381.02800.34790.100*
H8C0.28570.99220.29630.100*
C90.2493 (3)0.5495 (8)0.2465 (3)0.0773 (10)
H9A0.28370.48600.30630.116*
H9B0.30760.60480.20840.116*
H9C0.20580.43750.20990.116*
C100.0865 (2)0.0973 (5)0.43327 (18)0.0494 (6)
H10A0.06550.12850.50200.059*
H10B0.04030.02660.41460.059*
C110.2096 (2)0.0296 (5)0.42074 (18)0.0452 (6)
C120.2392 (3)0.1738 (7)0.4566 (4)0.0787 (12)
H120.18300.26740.48560.094*
C130.3520 (3)0.2411 (8)0.4502 (4)0.0966 (15)
H130.37110.37890.47510.116*
C140.4337 (3)0.1078 (10)0.4081 (4)0.0921 (14)
H140.50950.15150.40580.111*
C150.4060 (3)0.0900 (11)0.3690 (5)0.114 (2)
H150.46230.17950.33760.137*
C160.2925 (3)0.1590 (7)0.3761 (3)0.0835 (12)
H160.27380.29560.34980.100*
C170.3326 (2)0.5127 (6)0.0709 (3)0.0613 (8)
C180.3984 (3)0.6133 (11)0.1487 (4)0.1084 (18)
H18A0.39310.77280.14580.163*
H18B0.36740.56230.21190.163*
H18C0.47670.56930.13800.163*
C190.3701 (3)0.5986 (8)0.0303 (3)0.0872 (12)
H19A0.36490.75820.03070.131*
H19B0.44730.55450.04810.131*
H19C0.32180.53780.07650.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0444 (10)0.0412 (10)0.0313 (9)0.0039 (8)0.0040 (8)0.0003 (8)
O10.0417 (8)0.0452 (9)0.0306 (7)0.0071 (7)0.0083 (6)0.0006 (7)
O20.0443 (9)0.0466 (10)0.0421 (9)0.0176 (7)0.0019 (7)0.0041 (8)
O30.0495 (9)0.0706 (12)0.0317 (8)0.0259 (9)0.0027 (7)0.0008 (8)
O40.0652 (11)0.0476 (9)0.0312 (8)0.0141 (8)0.0090 (8)0.0014 (7)
O50.0343 (8)0.0513 (10)0.0536 (10)0.0019 (8)0.0047 (7)0.0090 (9)
O60.0367 (10)0.0663 (15)0.199 (4)0.0063 (11)0.0061 (15)0.0190 (19)
C10.0360 (10)0.0364 (10)0.0383 (12)0.0056 (9)0.0007 (9)0.0028 (10)
C20.0349 (10)0.0418 (11)0.0323 (11)0.0041 (9)0.0042 (8)0.0050 (9)
C30.0275 (9)0.0375 (10)0.0324 (11)0.0007 (8)0.0023 (8)0.0014 (9)
C40.0361 (10)0.0327 (10)0.0317 (10)0.0012 (8)0.0050 (8)0.0017 (9)
C50.0398 (11)0.0413 (11)0.0335 (11)0.0010 (10)0.0002 (9)0.0070 (10)
C60.0411 (12)0.0512 (15)0.0721 (19)0.0080 (12)0.0050 (13)0.0109 (14)
C70.0400 (12)0.0549 (14)0.0416 (13)0.0101 (11)0.0001 (10)0.0039 (12)
C80.0580 (16)0.077 (2)0.0614 (19)0.0270 (16)0.0088 (15)0.0039 (16)
C90.0561 (17)0.089 (3)0.086 (2)0.0134 (19)0.0004 (17)0.001 (2)
C100.0557 (14)0.0593 (16)0.0330 (12)0.0121 (13)0.0026 (10)0.0076 (12)
C110.0511 (13)0.0508 (14)0.0350 (11)0.0015 (11)0.0108 (10)0.0022 (11)
C120.0552 (17)0.073 (2)0.108 (3)0.0078 (16)0.0104 (18)0.038 (2)
C130.061 (2)0.089 (3)0.141 (4)0.019 (2)0.015 (2)0.039 (3)
C140.0490 (17)0.114 (3)0.115 (4)0.004 (2)0.016 (2)0.008 (3)
C150.0470 (18)0.126 (4)0.169 (5)0.019 (2)0.009 (2)0.051 (4)
C160.0572 (18)0.075 (2)0.119 (3)0.0096 (17)0.017 (2)0.036 (2)
C170.0320 (11)0.0644 (18)0.086 (2)0.0029 (12)0.0023 (12)0.0015 (17)
C180.060 (2)0.151 (5)0.118 (4)0.038 (3)0.028 (2)0.013 (4)
C190.0623 (18)0.092 (3)0.100 (3)0.007 (2)0.0366 (19)0.001 (2)
Geometric parameters (Å, º) top
N1—C31.265 (3)C8—H8B0.9600
N1—O41.410 (3)C8—H8C0.9600
O1—C11.425 (3)C9—H9A0.9600
O1—C41.431 (3)C9—H9B0.9600
O2—C11.398 (3)C9—H9C0.9600
O2—C71.426 (3)C10—C111.504 (4)
O3—C21.416 (3)C10—H10A0.9700
O3—C71.429 (3)C10—H10B0.9700
O4—C101.430 (3)C11—C161.352 (4)
O5—C171.426 (3)C11—C121.373 (5)
O5—C51.426 (3)C12—C131.386 (5)
O6—C61.400 (4)C12—H120.9300
O6—C171.409 (4)C13—C141.343 (7)
C1—C21.518 (3)C13—H130.9300
C1—H10.9800C14—C151.354 (7)
C2—C31.501 (3)C14—H140.9300
C2—H20.9800C15—C161.397 (6)
C3—C41.509 (3)C15—H150.9300
C4—C51.517 (3)C16—H160.9300
C4—H40.9800C17—C181.501 (6)
C5—C61.509 (4)C17—C191.508 (5)
C5—H50.9800C18—H18A0.9600
C6—H6A0.9700C18—H18B0.9600
C6—H6B0.9700C18—H18C0.9600
C7—C91.506 (5)C19—H19A0.9600
C7—C81.508 (4)C19—H19B0.9600
C8—H8A0.9600C19—H19C0.9600
C3—N1—O4110.36 (19)H8A—C8—H8C109.5
C1—O1—C4109.48 (16)H8B—C8—H8C109.5
C1—O2—C7108.55 (18)C7—C9—H9A109.5
C2—O3—C7109.31 (17)C7—C9—H9B109.5
N1—O4—C10108.36 (18)H9A—C9—H9B109.5
C17—O5—C5106.0 (2)C7—C9—H9C109.5
C6—O6—C17110.3 (2)H9A—C9—H9C109.5
O2—C1—O1110.25 (18)H9B—C9—H9C109.5
O2—C1—C2105.44 (18)O4—C10—C11113.8 (2)
O1—C1—C2107.37 (19)O4—C10—H10A108.8
O2—C1—H1111.2C11—C10—H10A108.8
O1—C1—H1111.2O4—C10—H10B108.8
C2—C1—H1111.2C11—C10—H10B108.8
O3—C2—C3113.8 (2)H10A—C10—H10B107.7
O3—C2—C1104.96 (18)C16—C11—C12118.4 (3)
C3—C2—C1103.64 (19)C16—C11—C10123.3 (3)
O3—C2—H2111.3C12—C11—C10118.3 (3)
C3—C2—H2111.3C11—C12—C13120.6 (4)
C1—C2—H2111.3C11—C12—H12119.7
N1—C3—C2130.3 (2)C13—C12—H12119.7
N1—C3—C4121.7 (2)C14—C13—C12120.2 (4)
C2—C3—C4107.98 (19)C14—C13—H13119.9
O1—C4—C3103.72 (17)C12—C13—H13119.9
O1—C4—C5109.72 (18)C13—C14—C15120.2 (4)
C3—C4—C5113.50 (18)C13—C14—H14119.9
O1—C4—H4109.9C15—C14—H14119.9
C3—C4—H4109.9C14—C15—C16119.8 (4)
C5—C4—H4109.9C14—C15—H15120.1
O5—C5—C6102.63 (19)C16—C15—H15120.1
O5—C5—C4108.59 (18)C11—C16—C15120.8 (4)
C6—C5—C4116.2 (2)C11—C16—H16119.6
O5—C5—H5109.7C15—C16—H16119.6
C6—C5—H5109.7O6—C17—O5105.4 (2)
C4—C5—H5109.7O6—C17—C18111.4 (4)
O6—C6—C5104.4 (2)O5—C17—C18107.9 (3)
O6—C6—H6A110.9O6—C17—C19109.0 (4)
C5—C6—H6A110.9O5—C17—C19110.1 (3)
O6—C6—H6B110.9C18—C17—C19112.8 (3)
C5—C6—H6B110.9C17—C18—H18A109.5
H6A—C6—H6B108.9C17—C18—H18B109.5
O2—C7—O3104.90 (19)H18A—C18—H18B109.5
O2—C7—C9111.1 (3)C17—C18—H18C109.5
O3—C7—C9110.2 (3)H18A—C18—H18C109.5
O2—C7—C8107.9 (2)H18B—C18—H18C109.5
O3—C7—C8107.6 (2)C17—C19—H19A109.5
C9—C7—C8114.6 (3)C17—C19—H19B109.5
C7—C8—H8A109.5H19A—C19—H19B109.5
C7—C8—H8B109.5C17—C19—H19C109.5
H8A—C8—H8B109.5H19A—C19—H19C109.5
C7—C8—H8C109.5H19B—C19—H19C109.5
C3—N1—O4—C10178.3 (2)C3—C4—C5—C668.1 (3)
C7—O2—C1—O193.8 (2)C17—O6—C6—C58.4 (4)
C7—O2—C1—C221.8 (3)O5—C5—C6—O625.7 (3)
C4—O1—C1—O2139.51 (18)C4—C5—C6—O6144.0 (3)
C4—O1—C1—C225.1 (2)C1—O2—C7—O327.2 (3)
C7—O3—C2—C3104.1 (2)C1—O2—C7—C991.9 (3)
C7—O3—C2—C18.6 (3)C1—O2—C7—C8141.6 (2)
O2—C1—C2—O38.0 (3)C2—O3—C7—O221.7 (3)
O1—C1—C2—O3109.5 (2)C2—O3—C7—C998.0 (3)
O2—C1—C2—C3127.70 (19)C2—O3—C7—C8136.4 (2)
O1—C1—C2—C310.1 (2)N1—O4—C10—C1174.9 (3)
O4—N1—C3—C21.8 (3)O4—C10—C11—C1612.1 (4)
O4—N1—C3—C4179.14 (19)O4—C10—C11—C12168.0 (3)
O3—C2—C3—N158.5 (3)C16—C11—C12—C132.2 (7)
C1—C2—C3—N1172.0 (2)C10—C11—C12—C13177.7 (4)
O3—C2—C3—C4120.6 (2)C11—C12—C13—C140.4 (8)
C1—C2—C3—C47.2 (2)C12—C13—C14—C152.0 (9)
C1—O1—C4—C328.9 (2)C13—C14—C15—C162.5 (9)
C1—O1—C4—C592.7 (2)C12—C11—C16—C151.7 (7)
N1—C3—C4—O1157.54 (19)C10—C11—C16—C15178.2 (5)
C2—C3—C4—O121.7 (2)C14—C15—C16—C110.6 (9)
N1—C3—C4—C583.5 (3)C6—O6—C17—O512.4 (5)
C2—C3—C4—C597.3 (2)C6—O6—C17—C18129.1 (4)
C17—O5—C5—C633.8 (3)C6—O6—C17—C19105.8 (4)
C17—O5—C5—C4157.3 (2)C5—O5—C17—O629.4 (4)
O1—C4—C5—O568.6 (2)C5—O5—C17—C18148.5 (3)
C3—C4—C5—O546.9 (3)C5—O5—C17—C1988.0 (3)
O1—C4—C5—C6176.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.982.433.386 (3)164
C10—H10A···O3ii0.972.463.387 (3)160
Symmetry codes: (i) x, y1/2, z; (ii) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H25NO6
Mr363.40
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.8012 (12), 6.0019 (5), 13.7021 (11)
β (°) 95.122 (11)
V3)966.64 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.05 × 0.04
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9449, 2558, 2023
Rint0.104
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.131, 0.99
No. of reflections2558
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.29

Computer programs: EXPOSE in IPDS Software (Stoe & Cie, 1997), CELL in IPDS Software (Stoe & Cie, 1997), INTEGRATE in IPDS Software (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), XP (Siemens, 1990) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.982.433.386 (3)164
C10—H10A···O3ii0.972.463.387 (3)160
Symmetry codes: (i) x, y1/2, z; (ii) x, y1/2, z+1.
 

Acknowledgements

This work was supported by the Carl Trygger Foundation and the Swedish Research Council (VR).

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFernández-González, M. & Alonso, R. (2006). J. Org. Chem. 71, 6767–6775.  Web of Science PubMed Google Scholar
First citationGatti, C., May, E., Destro, R. & Cargnoni, F. (2002). J. Phys. Chem. A, 106, 2707–2720.  Web of Science CSD CrossRef CAS Google Scholar
First citationPeri, F., Jiménez-Barbero, J., García-Aparicio, V., Tvaroška, I. & Nicotra, F. (2004). Chem. Eur. J. 10, 1433–1444.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPlenkiewicz, J., Szarek, W. A., Sipos, P. A. & Phibbs, M. K. (1974). Synthesis, pp. 56–58.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShing, T. K. M., Wong, C.-H. & Yip, T. (1996). Tetrahedron Asymmetry, 7, 1323–1340.  CrossRef CAS Web of Science Google Scholar
First citationSiemens (1990). XP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTronchet, J. M. J., Bizzozero, N., Koufaki, M., Habashi, F. & Geoffroy, M. (1989). J. Chem. Res. (M), 334, 2601–2619.  Google Scholar
First citationTronchet, J. M. J., Habashi, F., Martin, O. R., Bonenfant, A. P., Baehler, B. & Zumwald, J.-B. (1979). Helv. Chim. Acta, 62, 894–898.  CrossRef CAS Web of Science Google Scholar
First citationTronchet, J. M. J., Winter-Mihaly, E., Habashi, F., Schwarzenbach, D., Likić, U. & Geoffroy, M. (1981). Helv. Chim. Acta, 64, 610–616.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds