supplementary materials


Acta Cryst. (2009). E65, m319    [ doi:10.1107/S1600536809006230 ]

Bis([mu]-N,N-dimethyldithiocarbamato-[kappa]3S,S':S)bis[(N,N-dimethyldithiocarbamato-[kappa]2S,S')copper(II)]

L.-Q. Fan and J.-H. Wu

Abstract top

In the centrosymmetric dimeric title compound, [Cu2(C3H6NS2)4], the CuII atom is five-coordinate in a square-pyramidal environment. The basal coordination positions are occupied by four S atoms from two dimethyldithiocarbamate ligands and the apical coordination position is occupied by an S atom also bonded to the other Cu atom.

Comment top

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). Dialkyldithiocarbamates anions, which are typical sulfur ligands, acting as monodentate, bidentate or bridging ligands, are often chosen for the preparation of a considerable structural variety of complexes (Engelhardt et al., 1988; Fernández et al., 2000; Koh, et al., 2003). We report here the crystal structure of the title copper(II) complex, (I), contanining a dimethyldithiocarbamate ligand.

The crystal structure of (I) is built up by dimeric entities of CuII complex (Fig. 1). The coordination geometry of CuII ion is described as a distorted square-pyramid. The basal coordination positions are occupied by four S atoms from two dimethyldithiocarbamate ligands. Each briding S atom simultaneously occupies an equatorial coordination site on one CuII ion and apical site on the other CuII. The axial Cu—S bond distance is longer than the equatorial Cu—S ones (Table 1).

Related literature top

For the structural diversity and potential applications of transition metal complexes, see: Noro et al. (2000); Yaghi et al. (1998). For dialkyldithiocarbamates anions acting as monodentate, bidentate or bridging ligands, see: Engelhardt et al. (1988); Fernández et al. (2000); Koh et al. (2003);

Experimental top

A mixture of Cu(Ac)2.H2O (0.04 g, 0.2 mmol) and NaS2CNMe2.2H2O (0.04 g, 0.2 mmol) was stirred in DMF (15 ml) at 313 K. 2-PrOH was diffused into the resulting solution, yielding single crystals of (I).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). [Symmetry code: A 1 - x, y, 1/2 - z.]
Bis(µ-N,N-dimethyldithiocarbamato- κ3S,S':S)bis[(N,N- dimethyldithiocarbamato-κ2S,S')copper(II)] top
Crystal data top
[Cu2(C3H6NS2)4]F(000) = 1240
Mr = 607.91Dx = 1.727 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3071 reflections
a = 8.068 (3) Åθ = 2.5–27.5°
b = 19.446 (7) ŵ = 2.54 mm1
c = 15.108 (6) ÅT = 293 K
β = 99.354 (6)°Block, black
V = 2338.7 (15) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2685 independent reflections
Radiation source: Sealed Tube2423 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 910
Tmin = 0.807, Tmax = 1.000k = 2525
9796 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0741P)2 + 4.6176P]
where P = (Fo2 + 2Fc2)/3
2685 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu2(C3H6NS2)4]V = 2338.7 (15) Å3
Mr = 607.91Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.068 (3) ŵ = 2.54 mm1
b = 19.446 (7) ÅT = 293 K
c = 15.108 (6) Å0.25 × 0.20 × 0.15 mm
β = 99.354 (6)°
Data collection top
Rigaku Mercury CCD
diffractometer
2685 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
2423 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 1.000Rint = 0.048
9796 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.141Δρmax = 0.44 e Å3
S = 1.07Δρmin = 0.58 e Å3
2685 reflectionsAbsolute structure: ?
118 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.58962 (6)0.37634 (2)0.36682 (3)0.04294 (19)
S10.72601 (13)0.39120 (5)0.24400 (7)0.0438 (3)
S20.66137 (15)0.49238 (5)0.37410 (7)0.0493 (3)
S30.50794 (15)0.35823 (5)0.50440 (7)0.0497 (3)
S40.56076 (14)0.25771 (5)0.37160 (7)0.0478 (3)
N10.7709 (4)0.52631 (17)0.2215 (2)0.0482 (8)
N20.4789 (4)0.22341 (17)0.5308 (2)0.0451 (7)
C10.7268 (5)0.47699 (19)0.2734 (3)0.0410 (8)
C20.8173 (7)0.5106 (3)0.1342 (3)0.0660 (13)
H2A0.82250.46160.12690.099*
H2B0.92510.53030.13070.099*
H2C0.73480.52950.08760.099*
C30.7562 (7)0.5986 (2)0.2445 (4)0.0642 (13)
H3A0.72510.60220.30300.096*
H3B0.67170.62010.20110.096*
H3C0.86200.62110.24440.096*
C40.5123 (5)0.27279 (19)0.4761 (2)0.0396 (8)
C50.4841 (6)0.1509 (2)0.5072 (3)0.0616 (12)
H5A0.50850.14660.44730.092*
H5B0.37730.13010.51030.092*
H5C0.56990.12810.54830.092*
C60.4417 (6)0.2385 (3)0.6202 (3)0.0631 (13)
H6A0.44150.28740.62910.095*
H6B0.52570.21780.66450.095*
H6C0.33330.22020.62580.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0524 (3)0.0380 (3)0.0398 (3)0.00016 (19)0.0115 (2)0.00059 (18)
S10.0478 (6)0.0412 (5)0.0442 (5)0.0025 (4)0.0125 (4)0.0010 (4)
S20.0613 (7)0.0414 (5)0.0462 (6)0.0044 (4)0.0114 (5)0.0078 (4)
S30.0667 (7)0.0447 (5)0.0397 (5)0.0014 (5)0.0144 (5)0.0027 (4)
S40.0643 (7)0.0385 (5)0.0430 (6)0.0041 (4)0.0158 (5)0.0005 (4)
N10.0478 (19)0.0466 (18)0.0489 (19)0.0053 (15)0.0041 (15)0.0071 (15)
N20.0445 (18)0.0467 (17)0.0438 (18)0.0017 (14)0.0063 (14)0.0063 (14)
C10.0365 (18)0.0425 (18)0.041 (2)0.0001 (15)0.0015 (15)0.0027 (15)
C20.069 (3)0.072 (3)0.059 (3)0.008 (2)0.018 (2)0.013 (2)
C30.076 (3)0.042 (2)0.071 (3)0.012 (2)0.002 (2)0.008 (2)
C40.0359 (18)0.0454 (19)0.0367 (18)0.0026 (15)0.0034 (14)0.0051 (15)
C50.071 (3)0.043 (2)0.070 (3)0.002 (2)0.009 (2)0.013 (2)
C60.071 (3)0.072 (3)0.050 (3)0.005 (2)0.021 (2)0.016 (2)
Geometric parameters (Å, °) top
Cu1—S32.3072 (13)N2—C51.457 (5)
Cu1—S42.3208 (13)C2—H2A0.9600
Cu1—S12.3240 (13)C2—H2B0.9600
Cu1—S22.3278 (13)C2—H2C0.9600
Cu1—S1i2.8258 (14)C3—H3A0.9600
S1—C11.726 (4)C3—H3B0.9600
S2—C11.715 (4)C3—H3C0.9600
S3—C41.717 (4)C5—H5A0.9600
S4—C41.713 (4)C5—H5B0.9600
N1—C11.324 (5)C5—H5C0.9600
N1—C21.461 (6)C6—H6A0.9600
N1—C31.457 (6)C6—H6B0.9600
N2—C41.323 (5)C6—H6C0.9600
N2—C61.460 (5)
S3—Cu1—S477.03 (4)H2A—C2—H2B109.5
S3—Cu1—S1168.48 (5)N1—C2—H2C109.5
S4—Cu1—S1102.20 (4)H2A—C2—H2C109.5
S3—Cu1—S2102.16 (4)H2B—C2—H2C109.5
S4—Cu1—S2170.94 (5)N1—C3—H3A109.5
S1—Cu1—S276.75 (4)N1—C3—H3B109.5
S3—Cu1—S1i100.81 (5)H3A—C3—H3B109.5
S4—Cu1—S1i91.99 (4)N1—C3—H3C109.5
S1—Cu1—S1i90.70 (4)H3A—C3—H3C109.5
S2—Cu1—S1i97.01 (4)H3B—C3—H3C109.5
C1—S1—Cu184.09 (14)N2—C4—S3122.2 (3)
C1—S2—Cu184.21 (13)N2—C4—S4123.5 (3)
C4—S3—Cu184.45 (13)S3—C4—S4114.3 (2)
C4—S4—Cu184.12 (13)N2—C5—H5A109.5
C1—N1—C2121.1 (4)N2—C5—H5B109.5
C1—N1—C3121.2 (4)H5A—C5—H5B109.5
C2—N1—C3117.3 (4)N2—C5—H5C109.5
C4—N2—C6121.7 (4)H5A—C5—H5C109.5
C4—N2—C5122.2 (4)H5B—C5—H5C109.5
C6—N2—C5116.1 (4)N2—C6—H6A109.5
N1—C1—S2123.4 (3)N2—C6—H6B109.5
N1—C1—S1122.5 (3)H6A—C6—H6B109.5
S2—C1—S1114.1 (2)N2—C6—H6C109.5
N1—C2—H2A109.5H6A—C6—H6C109.5
N1—C2—H2B109.5H6B—C6—H6C109.5
Symmetry codes: (i) −x+1, y, −z+1/2.
Table 1
Selected geometric parameters (Å)
top
Cu1—S32.3072 (13)Cu1—S22.3278 (13)
Cu1—S42.3208 (13)Cu1—S1i2.8258 (14)
Cu1—S12.3240 (13)
Symmetry codes: (i) −x+1, y, −z+1/2.
Acknowledgements top

This work was supported financially by the Research Fund of Huaqiao University (No. 06BS216) and the Young Talent Fund of Fujian Province (No. 2007 F3060).

references
References top

Engelhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. H. (1988). Inorg. Chem. 27, 2371–2373.

Fernández, E. J., López-de-Luzuriaga, J. M., Monge, M., Olmos, E., Laguna, A., Villacampa, M. D. & Jones, P. G. (2000). J. Cluster Sci. 11, 153–166.

Koh, Y. W., Lai, C. S., Du, A. Y., Tiekink, E. R. T. & Loh, K. P. (2003). Chem. Mater. 15, 4544–4554.

Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084.

Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.