organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(2,6-Di­methyl­phen­yl)pyrido[2,3-d]pyrimidin-7-amine

aPfizer Global Research and Development, La Jolla Labs, 10614 Science Center Drive, San Diego, CA 92121, USA, and bDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: alex.yanovsky@pfizer.com

(Received 10 February 2009; accepted 20 February 2009; online 25 February 2009)

In the title compound, C15H14N4, the pyrido[2,3-d]pyrimidine system is almost ideally planar (r.m.s. deviation 0.028 Å) with its mean plane almost orthogonal to the 2,6-dimethyl­phenyl plane. The dihedral angle formed by these planes [87.3 (2)°] is close to the predicted value (89.7°) obtained by mol­ecular-mechanics force-field calculations. Only one of the two active amine H atoms participates in hydrogen bonding, which links mol­ecules into centrosymmetric dimers.

Related literature

For the structures of related pyrido[2,3-d]pyrimidine derivatives, see: Hamby et al. (1997[Hamby, J. M., Connolly, C. J. C., Schroeder, M. C., Winters, R. T., Showalter, H. D. H., Panek, R. L., Major, T. C., Olsewski, B., Ryan, M. J., Dahring, T., Lu, G. H., Keiser, J., Amar, A., Shen, C., Kraker, A. J., Slintak, V., Nelson, J. M., Fry, D. W., Bradford, L., Hallak, H. & Doherty, A. M. (1997). J. Med. Chem. 40, 2296-2303.]); Trumpp-Kallmeyer et al. (1998[Trumpp-Kallmeyer, S., Rubin, J. R., Humblet, C., Hamby, J. M. & Showalter, H. D. H. (1998). J. Med. Chem. 41, 1752-1763.]). For the synthesis of the title compound, see: Bennett et al. (1981[Bennett, L. R., Blankley, C. J., Fleming, R. W., Smith, R. D. & Tessman, D. K. (1981). J. Med. Chem. 24, 382-389.]); Blankley & Bennett (1981[Blankley, C. J. & Bennett, L. R. (1981). US Patent No. 4 271 164.]). For mol­ecular-mechanics force-field calculations, see: Duan et al. (2003[Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xion, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J. & Kolman, P. (2003). J. Comput. Chem. 24, 1999-2012.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4

  • Mr = 250.30

  • Monoclinic, C 2/c

  • a = 16.272 (3) Å

  • b = 10.644 (2) Å

  • c = 15.234 (3) Å

  • β = 109.118 (3)°

  • V = 2493.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 208 K

  • 0.14 × 0.06 × 0.06 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.988, Tmax = 0.995

  • 6161 measured reflections

  • 2863 independent reflections

  • 1706 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.152

  • S = 0.98

  • 2863 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N1i 0.87 2.18 3.044 (2) 171
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2004[Bruker 2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2004[Bruker 2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The present X-ray study confirmed the structure of the compound reported in Bennett et al. (1981) as 6-(2,6-dimethylphenyl)pyrido[2,3-d]pyrimidin-7-amine. The pyrido[2,3-d]pyrimidine system of the molecule of the title compound (Fig. 1) is planar within 0.045 Å. The 2,6-dimethylphenyl plane is approximately orthogonal to the mean plane of the bicyclic system; the corresponding dihedral angle [87.3 (2)°] is close to predicted value (89.7°), obtained by molecular mechanics force field calculations (Duan et al., 2003). The overall geometry of the molecule is quite close to the structures of previously studied phenyl substituted 7-aminopyrido[2,3-d]pyrimidines (Hamby et al., 1997; Trumpp-Kallmeyer et al., 1998).

Only one of the two amine H atoms (H4A) participates in the H-bonding (Table 1), which is responsible for formation of centrosymmetric dimers in the crystal. The H4B atom is close to the π-electron density of the phenyl ring and is not involved in either intra- or intermolecular H-bonding.

Related literature top

For the structures of related pyrido[2,3-d]pyrimidine derivatives, see: Hamby et al. (1997); Trumpp-Kallmeyer et al. (1998). For the synthesis of the title compound, see: Bennett et al. (1981); Blankley & Bennett (1981). For molecular-mechanics force-field calculations, see: Duan et al. (2003).

Experimental top

The title compound was synthesized according to Bennett et al. (1981) and Blankley & Bennett (1981).

Refinement top

All H atoms were treated as riding with the C—H(aromatic), CH(methyl) and N—H distances of 0.94 Å, 0.97 Å and 0.87 Å respectively; the Uiso(H) were set to 1.2Ueq of the carrying atom for aromatic and amine, and 1.5Ueq for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 50% probability displacement ellipsoids and atom numbering scheme. H atoms are drawn as circles with arbitrary small radius.
[Figure 2] Fig. 2. The crystal packing diagram viewed down the b-axis; H-bonds are shown as dashed lines.
6-(2,6-Dimethylphenyl)pyrido[2,3-d]pyrimidin-7-amine top
Crystal data top
C15H14N4F(000) = 1056
Mr = 250.30Dx = 1.334 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1859 reflections
a = 16.272 (3) Åθ = 2.3–27.8°
b = 10.644 (2) ŵ = 0.08 mm1
c = 15.234 (3) ÅT = 208 K
β = 109.118 (3)°Block, colorless
V = 2493.0 (8) Å30.14 × 0.06 × 0.06 mm
Z = 8
Data collection top
Bruker Kappa-APEX2 CCD area-detector
diffractometer
2863 independent reflections
Radiation source: fine-focus sealed tube1706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2121
Tmin = 0.988, Tmax = 0.995k = 1310
6161 measured reflectionsl = 1120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0773P)2]
where P = (Fo2 + 2Fc2)/3
2863 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H14N4V = 2493.0 (8) Å3
Mr = 250.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.272 (3) ŵ = 0.08 mm1
b = 10.644 (2) ÅT = 208 K
c = 15.234 (3) Å0.14 × 0.06 × 0.06 mm
β = 109.118 (3)°
Data collection top
Bruker Kappa-APEX2 CCD area-detector
diffractometer
2863 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1706 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.995Rint = 0.037
6161 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 0.98Δρmax = 0.22 e Å3
2863 reflectionsΔρmin = 0.22 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60306 (12)0.28432 (17)0.63650 (12)0.0292 (4)
C20.66357 (12)0.27235 (16)0.58459 (13)0.0286 (4)
C30.56152 (12)0.17232 (17)0.46410 (13)0.0298 (4)
C40.46019 (14)0.0833 (2)0.34015 (15)0.0425 (5)
H40.44610.05080.27960.051*
C50.41654 (13)0.12949 (19)0.46163 (14)0.0386 (5)
H50.37430.13000.49140.046*
C60.49866 (12)0.17682 (17)0.50973 (13)0.0309 (4)
C70.52301 (12)0.23505 (18)0.59840 (13)0.0323 (5)
H70.48290.23920.63080.039*
C80.62801 (12)0.35600 (18)0.72563 (13)0.0302 (4)
C90.66754 (12)0.29645 (19)0.81040 (13)0.0322 (5)
C100.68565 (13)0.3677 (2)0.89141 (14)0.0389 (5)
H100.71130.32850.94930.047*
C110.66687 (14)0.4936 (2)0.88847 (15)0.0456 (6)
H110.67980.53990.94390.055*
C120.62906 (14)0.5519 (2)0.80438 (15)0.0451 (6)
H120.61640.63820.80280.054*
C130.60939 (12)0.48549 (19)0.72209 (13)0.0355 (5)
C140.69087 (15)0.1587 (2)0.81607 (15)0.0472 (6)
H14A0.64350.10980.82410.071*
H14B0.74330.14460.86850.071*
H14C0.70080.13310.75920.071*
C150.56830 (15)0.5511 (2)0.63050 (15)0.0500 (6)
H15A0.56640.64080.64090.075*
H15B0.50970.51970.60160.075*
H15C0.60240.53500.59010.075*
N10.64297 (10)0.21747 (15)0.50164 (10)0.0315 (4)
N20.54103 (11)0.12193 (16)0.37767 (11)0.0377 (4)
N30.39463 (11)0.08379 (17)0.37626 (12)0.0435 (5)
N40.74304 (10)0.32180 (15)0.61956 (11)0.0375 (4)
H4A0.77910.31740.58830.045*
H4B0.75870.35840.67360.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (10)0.0319 (10)0.0273 (10)0.0037 (8)0.0122 (8)0.0018 (8)
C20.0303 (10)0.0287 (10)0.0283 (10)0.0014 (8)0.0115 (8)0.0037 (8)
C30.0311 (10)0.0302 (10)0.0292 (10)0.0008 (8)0.0116 (8)0.0015 (8)
C40.0454 (13)0.0515 (14)0.0317 (11)0.0075 (10)0.0141 (10)0.0073 (10)
C50.0325 (11)0.0459 (12)0.0393 (12)0.0015 (9)0.0142 (9)0.0036 (10)
C60.0317 (10)0.0326 (11)0.0305 (10)0.0015 (8)0.0129 (8)0.0018 (9)
C70.0303 (11)0.0379 (11)0.0340 (11)0.0029 (8)0.0178 (9)0.0010 (9)
C80.0259 (10)0.0378 (11)0.0312 (10)0.0020 (8)0.0151 (8)0.0034 (9)
C90.0281 (10)0.0373 (11)0.0330 (11)0.0026 (8)0.0124 (9)0.0010 (9)
C100.0337 (11)0.0530 (14)0.0303 (11)0.0046 (9)0.0107 (9)0.0028 (10)
C110.0475 (13)0.0527 (15)0.0372 (13)0.0062 (10)0.0144 (10)0.0156 (11)
C120.0474 (13)0.0382 (12)0.0508 (14)0.0008 (10)0.0176 (11)0.0090 (11)
C130.0358 (11)0.0356 (11)0.0374 (12)0.0009 (9)0.0149 (9)0.0018 (9)
C140.0541 (14)0.0454 (14)0.0386 (12)0.0074 (10)0.0105 (10)0.0038 (10)
C150.0591 (15)0.0417 (13)0.0499 (14)0.0078 (11)0.0188 (12)0.0070 (11)
N10.0316 (9)0.0381 (9)0.0289 (9)0.0014 (7)0.0156 (7)0.0005 (7)
N20.0390 (10)0.0462 (10)0.0306 (9)0.0056 (8)0.0150 (8)0.0052 (8)
N30.0378 (10)0.0520 (12)0.0409 (11)0.0065 (8)0.0134 (8)0.0079 (9)
N40.0336 (9)0.0488 (11)0.0347 (9)0.0064 (8)0.0175 (8)0.0098 (8)
Geometric parameters (Å, º) top
C1—C71.347 (3)C9—C101.395 (3)
C1—C21.456 (2)C9—C141.510 (3)
C1—C81.493 (2)C10—C111.372 (3)
C2—N11.332 (2)C10—H100.9400
C2—N41.335 (2)C11—C121.374 (3)
C3—N11.348 (2)C11—H110.9400
C3—N21.358 (2)C12—C131.382 (3)
C3—C61.413 (3)C12—H120.9400
C4—N21.317 (3)C13—C151.507 (3)
C4—N31.351 (3)C14—H14A0.9700
C4—H40.9400C14—H14B0.9700
C5—N31.323 (2)C14—H14C0.9700
C5—C61.391 (3)C15—H15A0.9700
C5—H50.9400C15—H15B0.9700
C6—C71.419 (3)C15—H15C0.9700
C7—H70.9400N4—H4A0.8700
C8—C91.392 (3)N4—H4B0.8700
C8—C131.408 (3)
C7—C1—C2117.54 (17)C9—C10—H10119.3
C7—C1—C8121.83 (16)C10—C11—C12119.9 (2)
C2—C1—C8120.51 (16)C10—C11—H11120.1
N1—C2—N4117.49 (16)C12—C11—H11120.1
N1—C2—C1123.29 (17)C11—C12—C13121.0 (2)
N4—C2—C1119.19 (17)C11—C12—H12119.5
N1—C3—N2116.55 (16)C13—C12—H12119.5
N1—C3—C6123.26 (17)C12—C13—C8118.86 (19)
N2—C3—C6120.19 (17)C12—C13—C15120.24 (19)
N2—C4—N3129.19 (19)C8—C13—C15120.89 (18)
N2—C4—H4115.4C9—C14—H14A109.5
N3—C4—H4115.4C9—C14—H14B109.5
N3—C5—C6123.63 (18)H14A—C14—H14B109.5
N3—C5—H5118.2C9—C14—H14C109.5
C6—C5—H5118.2H14A—C14—H14C109.5
C5—C6—C3116.98 (18)H14B—C14—H14C109.5
C5—C6—C7125.45 (17)C13—C15—H15A109.5
C3—C6—C7117.48 (17)C13—C15—H15B109.5
C1—C7—C6120.61 (17)H15A—C15—H15B109.5
C1—C7—H7119.7C13—C15—H15C109.5
C6—C7—H7119.7H15A—C15—H15C109.5
C9—C8—C13120.61 (17)H15B—C15—H15C109.5
C9—C8—C1121.08 (17)C2—N1—C3117.76 (15)
C13—C8—C1118.31 (17)C4—N2—C3115.93 (17)
C8—C9—C10118.21 (19)C5—N3—C4114.02 (17)
C8—C9—C14121.74 (17)C2—N4—H4A120.0
C10—C9—C14120.05 (18)C2—N4—H4B120.0
C11—C10—C9121.4 (2)H4A—N4—H4B120.0
C11—C10—H10119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N1i0.872.183.044 (2)171
Symmetry code: (i) x+3/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N4
Mr250.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)208
a, b, c (Å)16.272 (3), 10.644 (2), 15.234 (3)
β (°) 109.118 (3)
V3)2493.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.14 × 0.06 × 0.06
Data collection
DiffractometerBruker Kappa-APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.988, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6161, 2863, 1706
Rint0.037
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.152, 0.98
No. of reflections2863
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N1i0.872.1823.044 (2)171.1
Symmetry code: (i) x+3/2, y+1/2, z+1.
 

References

First citationBennett, L. R., Blankley, C. J., Fleming, R. W., Smith, R. D. & Tessman, D. K. (1981). J. Med. Chem. 24, 382–389.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBlankley, C. J. & Bennett, L. R. (1981). US Patent No. 4 271 164.  Google Scholar
First citationBruker 2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xion, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J. & Kolman, P. (2003). J. Comput. Chem. 24, 1999–2012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHamby, J. M., Connolly, C. J. C., Schroeder, M. C., Winters, R. T., Showalter, H. D. H., Panek, R. L., Major, T. C., Olsewski, B., Ryan, M. J., Dahring, T., Lu, G. H., Keiser, J., Amar, A., Shen, C., Kraker, A. J., Slintak, V., Nelson, J. M., Fry, D. W., Bradford, L., Hallak, H. & Doherty, A. M. (1997). J. Med. Chem. 40, 2296–2303.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrumpp-Kallmeyer, S., Rubin, J. R., Humblet, C., Hamby, J. M. & Showalter, H. D. H. (1998). J. Med. Chem. 41, 1752–1763.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds