organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o628-o629

3,4-Di­methyl­anilinium chloride monohydrate

aDépartement de Chimie, Faculté des Sciences et Sciences de l'Ingénieur, Université A. Mira de Béjaia, Route Targua Ouzmour, 06000 Béjaia, Algeria, bLaboratoire de Chimie Moléculaire du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri, Constantine 25000, Algeria, cFaculté de Chimie, USTHB, BP32, El-Alia, Bab-Ezzouar, Alger, Algeria, and dSciences Chimiques de Rennes (UMR CNRS 6226), Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 11 February 2009; accepted 19 February 2009; online 28 February 2009)

The crystal structure of the title compound, C8H12N+·Cl·H2O, consists of hydro­phobic layers of dimethyl­anilinium cations parallel to the bc plane alternated by hydro­philic layers of chloride anions and water mol­ecules. The layers are linked by N—H⋯O and N—H⋯Cl hydrogen bonds involving the ammonium groups of the cations. The cohesion of the ionic structure is further stabilized by O—H⋯Cl hydrogen-bonding inter­actions.

Related literature

For crystal structures containing the dimethyl­anilinium cation, see: Bouacida (2008[Bouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.]); Singh et al. (2002[Singh, G., Kapoor, I. P. S., Srivastava, J. & Kaur, J. (2002). J. Therm. Anal. Calorim. 69, 681-691.]); Singh et al. (1995a[Singh, G., Kapoor, I. P. S. & Mannan, S. M. (1995a). Thermochim. Acta, 262, 117-127.],b[Singh, G., Kapoor, I. P. S. & Mannan, S. M. (1995b). J. Energetic Mater. 13, 141-156.]); Linden et al. (1995[Linden, A., James, B. D. & Liesegang, J. (1995). Acta Cryst. C51, 2317-2320.]); Fábry et al. (2001[Fábry, J., Krupková, R. & Vaněk, P. (2001). Acta Cryst. E57, o1058-o1060.], 2002[Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105-o107.]). For the crystal structures of related protonated amines, see: Bouacida et al. (2005a[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153-m1155.],b[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072-m2074.],c[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577-m579.], 2006[Bouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838-o840.], 2007[Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379-m381.]); Benslimane et al. (2007[Benslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682-o3683.]); Rademeyer (2004a[Rademeyer, M. (2004a). Acta Cryst. C60, m55-m56.],b[Rademeyer, M. (2004b). Acta Cryst. E60, m345-m347.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·Cl·H2O

  • Mr = 175.65

  • Orthorhombic, P c a 21

  • a = 18.230 (18) Å

  • b = 6.7854 (14) Å

  • c = 7.916 (2) Å

  • V = 979.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 295 K

  • 0.1 × 0.04 × 0.02 mm

Data collection
  • Enraf–Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 10115 measured reflections

  • 2181 independent reflections

  • 1403 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.109

  • S = 1.15

  • 2181 reflections

  • 109 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 976 Friedel pairs

  • Flack parameter: 0.01 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1W 0.89 1.87 2.754 (5) 174
N1—H1B⋯Cl1i 0.89 2.30 3.177 (4) 167
N1—H1C⋯Cl1ii 0.89 2.31 3.181 (4) 167
O1W—H1W⋯Cl1 0.80 (6) 2.43 (6) 3.217 (5) 174 (7)
O1W—H2W⋯Cl1iii 0.81 (5) 2.36 (5) 3.174 (5) 176 (2)
Symmetry codes: (i) [-x, -y+1, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [-x, -y+2, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); and SCALEPACK program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg et al., 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines (Bouacida et al., 2005a,b,c; Bouacida et al., 2006; Benslimane et al., 2007; Bouacida et al., 2007). Structures containing the dimethylanilinium cation have been already reported with tin chloride (Bouacida, 2008), sulfate (Singh et al., 2002), nitrate and perchlorate (Singh et al., 1995a,b), chloride (Linden et al., 1995), and dihydrogenphosphate (Fabry et al., 2001; Fábry et al., 2002).

The molecular structure of the title compound is illustrated in Fig. 1. A l l bond distances and angles are within the ranges of accepted values. The amino N atom is protonated as in other aminoacids (Bouacida et al., 2006; Rademeyer 2004a,b). A diagram of the layered crystal packing of title compound is shown in Fig. 2, in which the cations are arranged to form zigzag layers parallel the ab plane, with the chloride ions and water molecules located between these layers. The structure may be also described as formed by hydrophobic layers parallel to the bc plane of dimethylanilinium cations alternated by hydrophilic layers of chloride anions and water molecules. In this structure, three types of classical hydrogen bonds are observed, viz. cation–anion, cation–water and water–anion (Fig. 3, Table 1). All three ammonium H atoms are involved in hydrogen bonds. These interactions link the molecules within the layers and also link the layers together, forming a three-dimensional network and reinforcing the cohesion of the ionic structure.

Related literature top

For crystal structures containing the dimethylanilinium cation, see: Bouacida (2008); Singh et al. (2002); Singh et al. (1995a,b); Linden et al. (1995); Fábry et al. (2001, 2002). For the crystal structures of related protonated amines, see: Bouacida et al. (2005a,b,c, 2006, 2007); Benslimane et al. (2007); Rademeyer (2004a,b).

Experimental top

An aqueous solution of SnCl2.2H2O (1 mmol) and 3,4-dimethylaniline (2 mmol) in hydrochloric acid was slowly evaporated to dryness for two weeks. White single crystals of the title compound were carefully isolated under polarizing microscope for X-ray diffraction analysis

Refinement top

The water H atoms were located in a difference Fourier map and refined isotropically, with Uiso(H) =1.25(O). All other H atoms were localized in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms, with C—H = 0.93–0.96 Å, N—H = 0.89Å and Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg et al., 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A diagram of the layered crystal packing in the title comound, viewed down the a axis.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed down the b axis. H bonds are shown as dashed lines.
3,4-Dimethylanilinium chloride monohydrate top
Crystal data top
C8H12N+·Cl·H2OF(000) = 376
Mr = 175.65Dx = 1.191 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9401 reflections
a = 18.230 (18) Åθ = 3.7–27.5°
b = 6.7854 (14) ŵ = 0.34 mm1
c = 7.916 (2) ÅT = 295 K
V = 979.2 (10) Å3Stalk, white
Z = 40.1 × 0.04 × 0.02 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
Rint = 0.078
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.7°
10115 measured reflectionsh = 2323
2181 independent reflectionsk = 88
1403 reflections with I > 2σ(I)l = 109
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0307P)2 + 0.3106P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.059(Δ/σ)max < 0.001
wR(F2) = 0.109Δρmax = 0.20 e Å3
S = 1.15Δρmin = 0.22 e Å3
2181 reflectionsAbsolute structure: Flack (1983), 976 Friedel pairs
109 parametersAbsolute structure parameter: 0.01 (11)
1 restraint
Crystal data top
C8H12N+·Cl·H2OV = 979.2 (10) Å3
Mr = 175.65Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 18.230 (18) ŵ = 0.34 mm1
b = 6.7854 (14) ÅT = 295 K
c = 7.916 (2) Å0.1 × 0.04 × 0.02 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
1403 reflections with I > 2σ(I)
10115 measured reflectionsRint = 0.078
2181 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109Δρmax = 0.20 e Å3
S = 1.15Δρmin = 0.22 e Å3
2181 reflectionsAbsolute structure: Flack (1983), 976 Friedel pairs
109 parametersAbsolute structure parameter: 0.01 (11)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06494 (14)0.5513 (4)0.2268 (4)0.0433 (10)
C10.14146 (17)0.4809 (5)0.2159 (4)0.0395 (11)
C20.1556 (2)0.3036 (6)0.1426 (5)0.0447 (12)
C30.22856 (19)0.2362 (5)0.1269 (4)0.0430 (13)
C40.28449 (18)0.3555 (5)0.1893 (5)0.0444 (11)
C50.2677 (2)0.5332 (6)0.2641 (5)0.0517 (14)
C60.1959 (2)0.5966 (5)0.2776 (5)0.0467 (12)
C70.2432 (3)0.0413 (6)0.0454 (6)0.0670 (19)
C80.3636 (2)0.2894 (7)0.1744 (7)0.0693 (16)
O1W0.0447 (3)0.8297 (5)0.4757 (4)0.0818 (13)
Cl10.04002 (5)0.77733 (12)0.87943 (11)0.0507 (3)
H1A0.061540.643000.306780.0650*
H1B0.035590.450760.252170.0650*
H1C0.051580.602530.127950.0650*
H20.117120.226550.102640.0534*
H50.305250.611750.306230.0620*
H60.185050.716750.328340.0559*
H7A0.276190.058960.047940.1007*
H7B0.197920.013810.005320.1007*
H7C0.264880.046430.126370.1007*
H8A0.395370.393190.212270.1038*
H8B0.374360.258670.058700.1038*
H8C0.371120.174440.242960.1038*
H1W0.046 (3)0.824 (9)0.576 (7)0.1038*
H2W0.022 (3)0.927 (8)0.447 (7)0.1038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0455 (16)0.0461 (17)0.0383 (18)0.0025 (13)0.0007 (14)0.0048 (14)
C10.0384 (18)0.044 (2)0.0361 (19)0.0062 (16)0.0041 (17)0.0089 (18)
C20.051 (2)0.043 (2)0.040 (2)0.0076 (17)0.0008 (19)0.0070 (18)
C30.060 (3)0.039 (2)0.0300 (17)0.0022 (17)0.004 (2)0.0089 (17)
C40.047 (2)0.051 (2)0.0353 (19)0.0013 (17)0.0013 (19)0.010 (2)
C50.052 (2)0.051 (2)0.052 (3)0.0056 (18)0.006 (2)0.002 (2)
C60.049 (2)0.045 (2)0.046 (2)0.0024 (18)0.0018 (19)0.0034 (18)
C70.097 (4)0.048 (3)0.056 (3)0.012 (2)0.008 (3)0.000 (2)
C80.052 (2)0.082 (3)0.074 (3)0.009 (2)0.007 (3)0.011 (3)
O1W0.127 (3)0.066 (2)0.0523 (18)0.037 (2)0.004 (2)0.0054 (17)
Cl10.0555 (4)0.0492 (5)0.0475 (4)0.0042 (4)0.0028 (6)0.0044 (6)
Geometric parameters (Å, º) top
O1W—H2W0.81 (5)C4—C51.378 (6)
O1W—H1W0.80 (6)C5—C61.382 (5)
N1—C11.477 (4)C2—H20.9300
N1—H1A0.8900C5—H50.9300
N1—H1C0.8900C6—H60.9300
N1—H1B0.8900C7—H7B0.9600
C1—C21.360 (5)C7—H7C0.9600
C1—C61.356 (5)C7—H7A0.9600
C2—C31.412 (5)C8—H8C0.9600
C3—C71.496 (6)C8—H8A0.9600
C3—C41.392 (5)C8—H8B0.9600
C4—C81.515 (5)
Cl1···O1W3.217 (5)C8···H7A2.8400
Cl1···N1i3.181 (4)H1A···H2W2.3400
Cl1···N1ii3.177 (4)H1A···O1W1.8700
Cl1···O1Wiii3.174 (5)H1A···H62.3100
Cl1···H1W2.43 (6)H1A···H1W2.4800
Cl1···H1Ci2.3100H1B···Cl1vi2.3000
Cl1···H1Bii2.3000H1B···H22.4300
Cl1···H5iv3.0900H1C···Cl1vii2.3100
Cl1···H2Wiii2.36 (5)H1W···H1A2.4800
O1W···Cl1v3.174 (5)H1W···Cl12.43 (6)
O1W···N12.754 (5)H2···H1B2.4300
O1W···Cl13.217 (5)H2···H7B2.3300
O1W···H1A1.8700H2W···Cl1v2.36 (5)
O1W···H62.9100H2W···H1A2.3400
N1···Cl1vi3.177 (4)H5···H8A2.3300
N1···Cl1vii3.181 (4)H5···Cl1viii3.0900
N1···O1W2.754 (5)H6···H1A2.3100
C3···C5viii3.509 (6)H6···C7xi3.0800
C3···C4viii3.565 (6)H6···O1W2.9100
C4···C3iv3.565 (6)H7A···H8B2.4000
C4···C7iv3.570 (7)H7A···C82.8400
C5···C3iv3.509 (6)H7A···C3viii2.8400
C7···C4viii3.570 (7)H7A···C4viii3.1000
C3···H7Aiv2.8400H7B···H22.3300
C4···H7Aiv3.1000H7C···C82.9300
C5···H7Cix3.0500H7C···C5xii3.0500
C6···H7Cix2.9800H7C···C6xii2.9800
C7···H8B2.8100H8A···H52.3300
C7···H8C2.9500H8B···C72.8100
C7···H6x3.0800H8B···H7A2.4000
C8···H7C2.9300H8C···C72.9500
H1W—O1W—H2W110 (6)C3—C2—H2120.00
H1A—N1—H1B109.00C1—C2—H2120.00
H1A—N1—H1C109.00C4—C5—H5120.00
C1—N1—H1B109.00C6—C5—H5119.00
C1—N1—H1C109.00C5—C6—H6121.00
H1B—N1—H1C109.00C1—C6—H6120.00
C1—N1—H1A109.00C3—C7—H7A109.00
N1—C1—C2119.3 (3)C3—C7—H7B109.00
C2—C1—C6121.8 (3)H7A—C7—H7B109.00
N1—C1—C6118.9 (3)H7A—C7—H7C109.00
C1—C2—C3120.2 (3)C3—C7—H7C110.00
C2—C3—C4118.1 (3)H7B—C7—H7C109.00
C2—C3—C7119.5 (4)C4—C8—H8B109.00
C4—C3—C7122.4 (3)C4—C8—H8C109.00
C3—C4—C8119.8 (3)C4—C8—H8A109.00
C5—C4—C8120.3 (3)H8A—C8—H8C109.00
C3—C4—C5119.9 (3)H8B—C8—H8C109.00
C4—C5—C6121.1 (3)H8A—C8—H8B110.00
C1—C6—C5119.0 (3)
N1—C1—C2—C3178.3 (3)C2—C3—C4—C8179.7 (4)
C6—C1—C2—C30.9 (6)C7—C3—C4—C5179.6 (4)
N1—C1—C6—C5178.5 (3)C7—C3—C4—C80.5 (6)
C2—C1—C6—C50.6 (6)C3—C4—C5—C60.4 (6)
C1—C2—C3—C40.4 (5)C8—C4—C5—C6179.5 (4)
C1—C2—C3—C7179.8 (4)C4—C5—C6—C10.0 (6)
C2—C3—C4—C50.2 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1/2; (iii) x, y+2, z+1/2; (iv) x+1/2, y, z+1/2; (v) x, y+2, z1/2; (vi) x, y+1, z1/2; (vii) x, y, z1; (viii) x+1/2, y, z1/2; (ix) x, y+1, z; (x) x+1/2, y1, z1/2; (xi) x+1/2, y+1, z+1/2; (xii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1W0.89001.87002.754 (5)174.00
N1—H1B···Cl1vi0.89002.30003.177 (4)167.00
N1—H1C···Cl1vii0.89002.31003.181 (4)167.00
O1W—H1W···Cl10.80 (6)2.43 (6)3.217 (5)174 (7)
O1W—H2W···Cl1v0.81 (5)2.36 (5)3.174 (5)176 (2)
Symmetry codes: (v) x, y+2, z1/2; (vi) x, y+1, z1/2; (vii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC8H12N+·Cl·H2O
Mr175.65
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)18.230 (18), 6.7854 (14), 7.916 (2)
V3)979.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.1 × 0.04 × 0.02
Data collection
DiffractometerEnraf–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10115, 2181, 1403
Rint0.078
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.109, 1.15
No. of reflections2181
No. of parameters109
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.22
Absolute structureFlack (1983), 976 Friedel pairs
Absolute structure parameter0.01 (11)

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg et al., 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1W0.89001.87002.754 (5)174.00
N1—H1B···Cl1i0.89002.30003.177 (4)167.00
N1—H1C···Cl1ii0.89002.31003.181 (4)167.00
O1W—H1W···Cl10.80 (6)2.43 (6)3.217 (5)174 (7)
O1W—H2W···Cl1iii0.81 (5)2.36 (5)3.174 (5)176 (2)
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z1; (iii) x, y+2, z1/2.
 

Acknowledgements

The authors are grateful to Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for the data collection facilities. SB thanks Université A. Mira de Béjaia, Algéria, for financial support.

References

First citationBenslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682–o3683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.  Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005a). Acta Cryst. E61, m1153–m1155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005b). Acta Cryst. E61, m2072–m2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005c). Acta Cryst. E61, m577–m579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H. & Benard-Rocherulle, P. (2006). Acta Cryst. E62, o838–o840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFábry, J., Krupková, R. & Vaněk, P. (2001). Acta Cryst. E57, o1058–o1060.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLinden, A., James, B. D. & Liesegang, J. (1995). Acta Cryst. C51, 2317–2320.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRademeyer, M. (2004a). Acta Cryst. C60, m55–m56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRademeyer, M. (2004b). Acta Cryst. E60, m345–m347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G., Kapoor, I. P. S. & Mannan, S. M. (1995a). Thermochim. Acta, 262, 117–127.  CrossRef CAS Web of Science Google Scholar
First citationSingh, G., Kapoor, I. P. S. & Mannan, S. M. (1995b). J. Energetic Mater. 13, 141–156.  CrossRef CAS Google Scholar
First citationSingh, G., Kapoor, I. P. S., Srivastava, J. & Kaur, J. (2002). J. Therm. Anal. Calorim. 69, 681–691.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o628-o629
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds