organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Meth­oxy­benzyl­­idene)-2-nitro­benzo­hydrazide

aSchool of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha Hunan 410004, People's Republic of China
*Correspondence e-mail: gejiangxiaowc@163.com

(Received 10 February 2009; accepted 18 February 2009; online 21 February 2009)

The title compound, C15H13N3O4, was synthesized by the reaction of equimolar quanti­ties of 2-methoxy­benzaldehyde and 2-nitro­benzohydrazide in methanol. The dihedral angle between the two substituted benzene rings is 68.3 (2)°. In the crystal structure, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For the pharmacological properties of hydrazone compounds, see: Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]). For related structures, see: Galić et al. (2001[Galić, N., Perić, B., Kojić-Prodić, B. & Cimerman, Z. (2001). J. Mol. Struct. 559, 187-194.]); Richardson & Bernhardt (1999[Richardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266-273.]); Ali et al. (2004[Ali, H., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, o1873-o1874.]). For bond length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4

  • Mr = 299.28

  • Triclinic, [P \overline 1]

  • a = 7.491 (2) Å

  • b = 9.427 (3) Å

  • c = 10.977 (3) Å

  • α = 91.748 (4)°

  • β = 106.218 (4)°

  • γ = 92.221 (4)°

  • V = 743.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.23 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.979

  • 6232 measured reflections

  • 3140 independent reflections

  • 2018 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.03

  • 3140 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.910 (9) 1.943 (10) 2.844 (2) 170.3 (18)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have received considerable attention due to their pharmacological properties (Beraldo & Gambino, 2004). In the last few years, the crystal structures and properties of a series of hydrazone compounds have been reported (Galić et al., 2001; Richardson & Bernhardt, 1999; Ali et al., 2004). As a continuation of work on these compounds, we report here the structure of the title compound, (I) Fig. 1.

In (I), the dihedral angle between the C1—C6 and C9—C14 benzene rings is 111.7 (2)° while that between the O2—N3—O3 nitro plane and the plane of the C1—C6 benzene ring is 26.7 (2)°. Bond lengths in the compound are found to have normal values (Allen et al., 1987). The methoxy group is coplanar with the C9—C14 benzene ring, with a C15—O4—C10—C11 torsion angle of -3.2 (2)°.

In the crystal packing, adjacent molecules are linked through intermolecular N1–H1···O1 hydrogen bonds (Table 1), forming dimers (Fig. 2).

Related literature top

For the pharmacological properties of hydrazone compounds, see: Beraldo & Gambino (2004). For related structures, see: Galić et al. (2001); Richardson & Bernhardt (1999); Ali et al. (2004). For bond length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by the reaction of equimolar quantities (1.0 mmol each) of 2-methoxybenzaldehyde and 2-nitrobenzohydrazide in methanol (100 ml) for 3 h at room temperature. The solution was kept in air for a few days, forming colorless block-like crystals of the compound.

Refinement top

The N-bound H atom was located in a difference Fourier map and was refined with an N–H distance restraint of 0.90 (1) Å. C-bound H atoms were placed in calculated positions (C–H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C15). Crystals were small and weakly diffracting which explains the relatively low data fraction.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.
N'-(2-Methoxybenzylidene)-2-nitrobenzohydrazide top
Crystal data top
C15H13N3O4Z = 2
Mr = 299.28F(000) = 312
Triclinic, P1Dx = 1.338 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.491 (2) ÅCell parameters from 1428 reflections
b = 9.427 (3) Åθ = 2.8–24.9°
c = 10.977 (3) ŵ = 0.10 mm1
α = 91.748 (4)°T = 298 K
β = 106.218 (4)°Block, colorless
γ = 92.221 (4)°0.23 × 0.23 × 0.22 mm
V = 743.1 (4) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3140 independent reflections
Radiation source: fine-focus sealed tube2018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.978, Tmax = 0.979k = 1211
6232 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.0142P]
where P = (Fo2 + 2Fc2)/3
3140 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C15H13N3O4γ = 92.221 (4)°
Mr = 299.28V = 743.1 (4) Å3
Triclinic, P1Z = 2
a = 7.491 (2) ÅMo Kα radiation
b = 9.427 (3) ŵ = 0.10 mm1
c = 10.977 (3) ÅT = 298 K
α = 91.748 (4)°0.23 × 0.23 × 0.22 mm
β = 106.218 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3140 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2018 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.979Rint = 0.022
6232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.14 e Å3
3140 reflectionsΔρmin = 0.20 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6095 (2)0.83513 (13)0.54829 (12)0.0763 (4)
O20.1921 (2)0.69215 (17)0.37644 (16)0.0874 (5)
O30.1059 (2)0.54863 (19)0.2124 (2)0.1155 (7)
O40.32257 (18)1.20069 (12)0.01171 (11)0.0635 (4)
N10.4749 (2)0.90208 (15)0.35161 (13)0.0609 (4)
N20.3966 (2)0.86740 (14)0.22397 (12)0.0526 (4)
N30.2239 (2)0.60480 (19)0.30207 (19)0.0714 (5)
C10.5624 (2)0.65719 (17)0.38490 (14)0.0479 (4)
C20.4158 (2)0.56387 (18)0.32220 (16)0.0504 (4)
C30.4423 (3)0.43069 (18)0.27844 (17)0.0620 (5)
H30.34080.37090.23600.074*
C40.6193 (3)0.3869 (2)0.29785 (19)0.0686 (5)
H40.63920.29670.26900.082*
C50.7670 (3)0.4760 (2)0.35974 (18)0.0663 (5)
H50.88750.44630.37250.080*
C60.7390 (2)0.6095 (2)0.40340 (16)0.0590 (5)
H60.84110.66840.44610.071*
C70.5456 (3)0.80422 (18)0.43443 (16)0.0559 (5)
C80.3456 (2)0.97399 (17)0.15700 (15)0.0496 (4)
H80.36911.06450.19580.060*
C90.2516 (2)0.95924 (17)0.02188 (15)0.0473 (4)
C100.2377 (2)1.07927 (19)0.05146 (15)0.0507 (4)
C110.1419 (3)1.0699 (2)0.17899 (17)0.0675 (5)
H110.13281.14990.22750.081*
C120.0606 (3)0.9428 (3)0.2335 (2)0.0777 (6)
H120.00410.93710.31930.093*
C130.0727 (3)0.8231 (2)0.1637 (2)0.0735 (6)
H130.01700.73700.20200.088*
C140.1680 (3)0.8317 (2)0.03657 (18)0.0618 (5)
H140.17630.75080.01070.074*
C150.3219 (4)1.3252 (2)0.0573 (2)0.0835 (7)
H15A0.38221.30860.12270.125*
H15B0.38741.40190.00090.125*
H15C0.19581.34970.09530.125*
H10.462 (3)0.9897 (13)0.3841 (18)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1187 (12)0.0584 (8)0.0431 (8)0.0124 (8)0.0071 (7)0.0026 (6)
O20.0841 (11)0.0920 (11)0.1047 (12)0.0271 (9)0.0521 (9)0.0251 (10)
O30.0594 (10)0.1026 (13)0.1606 (18)0.0046 (9)0.0059 (11)0.0071 (12)
O40.0816 (9)0.0535 (7)0.0498 (7)0.0058 (6)0.0095 (6)0.0122 (6)
N10.0937 (12)0.0441 (8)0.0412 (8)0.0091 (8)0.0119 (8)0.0035 (6)
N20.0670 (9)0.0485 (8)0.0426 (8)0.0070 (7)0.0149 (7)0.0036 (6)
N30.0590 (11)0.0633 (11)0.0941 (14)0.0018 (9)0.0236 (10)0.0200 (10)
C10.0598 (11)0.0455 (9)0.0382 (9)0.0046 (8)0.0122 (7)0.0101 (7)
C20.0515 (10)0.0488 (10)0.0536 (10)0.0057 (8)0.0180 (8)0.0126 (8)
C30.0713 (13)0.0459 (10)0.0673 (12)0.0034 (9)0.0175 (10)0.0045 (9)
C40.0838 (15)0.0526 (11)0.0747 (13)0.0144 (10)0.0292 (11)0.0060 (10)
C50.0629 (12)0.0700 (13)0.0697 (13)0.0201 (10)0.0213 (10)0.0160 (10)
C60.0552 (11)0.0629 (12)0.0541 (11)0.0023 (9)0.0067 (8)0.0105 (9)
C70.0734 (12)0.0496 (10)0.0427 (10)0.0033 (9)0.0127 (8)0.0069 (8)
C80.0599 (10)0.0437 (9)0.0454 (10)0.0036 (8)0.0148 (8)0.0032 (8)
C90.0486 (9)0.0490 (10)0.0459 (9)0.0047 (7)0.0153 (7)0.0012 (8)
C100.0483 (10)0.0598 (11)0.0436 (9)0.0040 (8)0.0118 (7)0.0036 (8)
C110.0670 (12)0.0854 (15)0.0466 (11)0.0043 (11)0.0096 (9)0.0082 (10)
C120.0665 (13)0.1108 (18)0.0486 (11)0.0036 (12)0.0059 (9)0.0106 (12)
C130.0657 (13)0.0799 (15)0.0706 (14)0.0082 (11)0.0166 (10)0.0269 (12)
C140.0641 (12)0.0577 (11)0.0635 (12)0.0007 (9)0.0191 (9)0.0070 (9)
C150.1165 (18)0.0631 (13)0.0682 (14)0.0017 (12)0.0200 (12)0.0229 (11)
Geometric parameters (Å, º) top
O1—C71.2283 (19)C5—C61.377 (3)
O2—N31.218 (2)C5—H50.9300
O3—N31.215 (2)C6—H60.9300
O4—C101.358 (2)C8—C91.453 (2)
O4—C151.416 (2)C8—H80.9300
N1—C71.333 (2)C9—C141.385 (2)
N1—N21.3828 (19)C9—C101.399 (2)
N1—H10.910 (9)C10—C111.382 (2)
N2—C81.270 (2)C11—C121.364 (3)
N3—C21.461 (2)C11—H110.9300
C1—C61.376 (2)C12—C131.375 (3)
C1—C21.386 (2)C12—H120.9300
C1—C71.496 (2)C13—C141.377 (3)
C2—C31.372 (2)C13—H130.9300
C3—C41.365 (3)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.366 (3)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C10—O4—C15118.70 (14)N1—C7—C1118.62 (15)
C7—N1—N2121.79 (14)N2—C8—C9122.23 (15)
C7—N1—H1117.1 (13)N2—C8—H8118.9
N2—N1—H1120.3 (13)C9—C8—H8118.9
C8—N2—N1113.81 (14)C14—C9—C10118.43 (16)
O3—N3—O2124.2 (2)C14—C9—C8122.47 (16)
O3—N3—C2117.72 (19)C10—C9—C8119.04 (15)
O2—N3—C2118.09 (18)O4—C10—C11124.23 (17)
C6—C1—C2116.74 (16)O4—C10—C9115.40 (14)
C6—C1—C7117.41 (16)C11—C10—C9120.37 (17)
C2—C1—C7125.85 (16)C12—C11—C10119.7 (2)
C3—C2—C1122.53 (17)C12—C11—H11120.2
C3—C2—N3117.31 (17)C10—C11—H11120.2
C1—C2—N3120.16 (16)C11—C12—C13121.14 (19)
C4—C3—C2119.23 (18)C11—C12—H12119.4
C4—C3—H3120.4C13—C12—H12119.4
C2—C3—H3120.4C12—C13—C14119.44 (19)
C3—C4—C5119.76 (18)C12—C13—H13120.3
C3—C4—H4120.1C14—C13—H13120.3
C5—C4—H4120.1C13—C14—C9120.9 (2)
C4—C5—C6120.57 (19)C13—C14—H14119.5
C4—C5—H5119.7C9—C14—H14119.5
C6—C5—H5119.7O4—C15—H15A109.5
C1—C6—C5121.16 (18)O4—C15—H15B109.5
C1—C6—H6119.4H15A—C15—H15B109.5
C5—C6—H6119.4O4—C15—H15C109.5
O1—C7—N1121.37 (16)H15A—C15—H15C109.5
O1—C7—C1119.77 (15)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (1)1.94 (1)2.844 (2)170 (2)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H13N3O4
Mr299.28
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.491 (2), 9.427 (3), 10.977 (3)
α, β, γ (°)91.748 (4), 106.218 (4), 92.221 (4)
V3)743.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.978, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
6232, 3140, 2018
Rint0.022
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.03
No. of reflections3140
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.20

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.910 (9)1.943 (10)2.844 (2)170.3 (18)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by Changsha University of Science and Technology (project No. 1004091).

References

First citationAli, H., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, o1873–o1874.  CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGalić, N., Perić, B., Kojić-Prodić, B. & Cimerman, Z. (2001). J. Mol. Struct. 559, 187–194.  Web of Science CSD CrossRef CAS Google Scholar
First citationRichardson, D. R. & Bernhardt, P. V. (1999). J. Biol. Inorg. Chem. 4, 266–273.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds