organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o486-o487

2-Fluoro-N-(2-fluoro­benzo­yl)-N-(2-pyrid­yl)benzamide

aSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and bDepartment of Chemistry, 80 St George Street, University of Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: john.gallagher@dcu.ie

(Received 14 January 2009; accepted 16 January 2009; online 6 February 2009)

The title compound, C19H12F2N2O2, a 2:1 product of the reaction of 2-fluoro­benzoyl chloride and 2-amino­pyridine, crystallizes with a disordered 2-fluoro­benzene ring adopting two conformations [ratio of occupancies = 0.930 (4):0.070 (4)] in one of the two independent mol­ecules (differing slightly in conformation) comprising the asymmetric unit. In the crystal structure, C—H⋯O and C—H⋯π(arene) inter­actions are present.

Related literature

For background information, see: Donnelly et al. (2008[Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335-o340.]); Gallagher et al. (2008[Gallagher, J. F., McMahon, J., Anderson, F. P. & Lough, A. J. (2008). Acta Cryst. E64, o2394.], 2009[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009). Acta Cryst. E65, o102-o103.]); McMahon et al. (2008[McMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493-o497.]); Moody et al. (1998[Moody, C. J., Miah, S., Slawin, A. M. Z., Mansfield, D. J. & Richards, I. C. (1998). Tetrahedron, 54, 9689-9700.]). For the parent compound, 2-(dibenzoyl­amino)­pyridine, see: Weng et al. (2006[Weng, Y.-B., Wang, J.-K. & Wang, Y.-F. (2006). Acta Cryst. E62, o1868-o1869.]). For related structures, see: Akinboye, Butcher, Brandy et al. (2009[Akinboye, E. S., Butcher, R. J., Brandy, Y., Adesiyun, T. A. & Bakare, O. (2009). Acta Cryst. E65, o24.]); Akinboye, Butcher, Wright et al. (2009[Akinboye, E. S., Butcher, R. J., Wright, D. A., Brandy, Y. & Bakare, O. (2009). Acta Cryst. E65, o277.]); Usman et al. (2002a[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002a). Acta Cryst. E58, o357-o358.],b[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002b). Acta Cryst. E58, o377-o379.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12F2N2O2

  • Mr = 338.31

  • Monoclinic, P 21 /c

  • a = 8.7421 (3) Å

  • b = 20.4270 (8) Å

  • c = 17.8175 (5) Å

  • β = 104.145 (2)°

  • V = 3085.29 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 (1) K

  • 0.30 × 0.14 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.850, Tmax = 0.988

  • 7253 measured reflections

  • 7044 independent reflections

  • 3758 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.150

  • S = 0.99

  • 7044 reflections

  • 461 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13A—H13A⋯O1Bi 0.95 2.41 3.201 (3) 141
C14A—H14A⋯O2Ai 0.95 2.59 3.493 (3) 158
C16A—H16A⋯O2B 0.95 2.54 3.488 (3) 174
C33A—H33A⋯O2Bii 0.95 2.56 3.435 (3) 154
C34A—H34A⋯O1Aii 0.95 2.47 3.194 (3) 133
C35A—H35ACg1iii 0.95 2.88 3.591 (3) 133
C16B—H16B⋯O2A 0.95 2.51 3.456 (3) 172
C25B—H25B⋯O2Biv 0.95 2.50 3.434 (3) 169
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z. Cg1 is the centroid of the C11–C16 benzene ring.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SORTX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998[Ferguson, G. (1998). PREP8. University of Guelph, Canada.]).

Supporting information


Comment top

Our group is completing a structural systematic study of fluoro-N'-(pyridyl)benzamide isomers (Donnelly et al., 2008) and we are adding to our research with the analogous difluoro-N-(pyridyl)benzamide series (McMahon et al., 2008) (Scheme 1).

In the chemical synthesis of either the mono- or di-fluoro derivatives and when using the ortho-aminopyridine, two products can be isolated as either the 1:1 or 2:1 benzoyl:pyridine components and with yields and ratios depending on the reaction conditions. We have reported on the structure of the 1:1 derivative namely 2,3-difluoro-N-(2-pyridyl)benzamide (Gallagher et al., 2008) and report herein a 2:1 relative of this type of compound, namely 2-fluoro-N-(2-fluorobenzoyl)-N-(2-pyridyl)benzamide (I) (Figs 1, 2).

The parent compound 2-(dibenzoylamino)pyridine has been reported previously (Weng et al., 2006) as well as the closely related compounds, N,N-dibenzoyl-4-chloroaniline and 4-Acetyl-N,N-dibenzoylphenylamine (Usman et al., 2002a,b). A review of the literature suggests that structures of this type are rare despite the large number of substituted benzamides reported. Recently, the crystal structures of two compounds N-(3-bromo-1,4-dioxo-1,4-dihydro-2-naphthyl)-2-chloro-N-(2-chlorobenzoyl)benzamide & N-(3-bromo-1,4-dioxo-1,4-dihydro-2-naphthyl)-4-fluoro-N-(4-fluorobenzoyl)benzamide have been reported (Akinboye, Butcher, Brandy et al., 2009; Akinboye, Butcher, Wright et al., 2009) but these differ substantially from (I) in the quinone scaffold or more specifically in the chloro-1,4-naphthoquinone skeleton.

Compound (I) crystallizes with two independent molecules A and B in the asymmetric unit that differ slightly in conformation as depicted in the overlay diagram, Fig. 3. The interesting differences between molecules A and B in (I) can readily be compared with (II) 3-fluoro-N-(3-fluorobenzoyl)-N-(2-pyridyl)benzamide (Gallagher et al., 2008) and the parent structure 2-(dibenzoylamino)pyridine reported by Weng et al. (2006).

In (I), the subtle differences between molecules (A) and (B) are mainly centred about the N1A/N1B tri-substituted C atoms. For example the N1—C2 bond lengths are 1.422 (3) and 1.399 (3) Å, i.e. differ by greater than 0.02 Å, whereas the N1—C1/N1—C21 pair are similar at 1.414 (3)/1.439 (3) Å and 1.419 (3)/1.444 (3) Å in molecules A and B, respectively. The related 3-fluoro structure (II) has bond lengths of 1.420 (3)/1.420 (3)/1.448 (3) Å for the analagous bonds and highlights the short N1B—C2B bond length.

The C1—N1—C2 angles are similar, i.e. 121.35 (18)°/121.40 (18)°, but the C1—N1—C21/C2—N1—C21 angle pair are 118.44 (16)°/117.10 (17)° and 116.97 (16)°/120.51 (17)° in A and B, respectively, highlighting both the similarity of the C1—N1—C21/C2—N1—C21 angle pair in A and the 3.5° angle difference in molecule B, as well as the difference in the C2—N1—C21 angle between A and B. The differences in bond lengths and angles must be mainly attributed to crystal packing forces and also the orientational differences of the benzoyl groups at C2A and C2B which can lead to possible and slightly different delocalization along the O2=C2—N1 moiety in A and B. A slight distortion in the N1—C21—C26 angles at 121.0 (2) (A) and 118.6 (2)° (B) is also noted.

The packing distortions also manifest in the C6 and C5N rings with respect to the central groups to which they are attached. The angles for C1—C11···C14 are 177.51 (17)/169.21 (15)° and the C2—C31···C34 angles are 172.26 (15)/175.25 (16)° in molecules A and B, respectively, highlighting aromatic ring bending differences of > 8° present in the former angle. The corresponding deformation angles in (II) are 176.97 (16) and 174.78 (17)°. In (I), the N1—C21···C24 angles are 177.20 (18) and 179.70 (17)° with little distortion of this central aromatic group with respect to the molecular backbone, Fig. 4.

In the crystal structure, there are no classical hydrogen bonds and interactions comprise weak C—H···O and C—H···π(arene) interactions, Table 1.

Related literature top

For background information, see: Donnelly et al. (2008); Gallagher et al. (2008, 2009); McMahon et al. (2008); Moody et al. (1998). For the parent compound, 2-(dibenzoylamino)pyridine, see: Weng et al. (2006). For related structures, see: Akinboye, Butcher, Brandy et al. (2009); Akinboye, Butcher, Wright et al. (2009); Usman et al. (2002a,b).

Experimental top

Compound (I) was synthesized via standard condensation procedures and similar to the related syntheses reported by us (Donnelly et al., 2008; McMahon et al., 2008). Separation of the 1:1 and 2:1 derivatives was undertaken by using flash chromatography using CHCl3:ethyl acetate. Typical organic workup and washing gave the product (I) in modest yield of 30–40% as a 2:1 component of the mixture. Crystals suitable for X-ray diffraction were grown from CHCl3 as colourless blocks over a period of 1–2 weeks and gave a melting point of 367–371 K. The compounds gave clean 1H and 13C NMR spectra in CDCl3 solution. IR (νC=O cm-1): 1715, 1688(s, br), (CHCl3); 1710, 1698(s) (KBr).

Refinement top

In the final stages of refinement it was observed that there was electron density consistent with a partial occupancy F atom in a position expected for a minor orientation (site) of the F32A F atom position as F36A. This new site only necessitates rotation by 180° about the C2A—C31A axis in a group that is not engaged in strong hydrogen bonding and is relatively free to rotate.

The minor F36A site was treated initially with isotropic displacement values and in the final refinement cycles was restrained by DELU/ISOR restraints of 0.1 (for F32A, F36A). The final refinement cycles gave site occupancy values of 0.930 (4):0.070 (4). As the major and minor sites for the C6 ring essentially coincide it was decided to retain the major orientation with 100% occupancy for use with the restraints.

The H atoms attached to C atoms were treated as riding with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SORTX (McArdle, 1995); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of molecule A in (I) with the atomic numbering scheme. The disordered components F32A and F36A are retained. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of molecule B in (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. An overlay of molecules A (red) and B (black) in (I) with the disordered F32A/F36A sites and also the F32B atom removed for clarity.
[Figure 4] Fig. 4. The major differences in bond length and angle between molecules A (red) and B (blue).
2-Fluoro-N-(2-fluorobenzoyl)-N-(2-pyridyl)benzamide top
Crystal data top
C19H12F2N2O2F(000) = 1392
Mr = 338.31Dx = 1.457 Mg m3
Monoclinic, P21/cMelting point: 367 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.7421 (3) ÅCell parameters from 8844 reflections
b = 20.4270 (8) Åθ = 2.6–27.5°
c = 17.8175 (5) ŵ = 0.11 mm1
β = 104.145 (2)°T = 150 K
V = 3085.29 (18) Å3Block, colourless
Z = 80.30 × 0.14 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
7044 independent reflections
Radiation source: fine-focus sealed X-ray tube3758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1110
Tmin = 0.850, Tmax = 0.988k = 2626
7253 measured reflectionsl = 1923
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0741P)2]
where P = (Fo2 + 2Fc2)/3
7044 reflections(Δ/σ)max < 0.001
461 parametersΔρmax = 0.29 e Å3
12 restraintsΔρmin = 0.35 e Å3
Crystal data top
C19H12F2N2O2V = 3085.29 (18) Å3
Mr = 338.31Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.7421 (3) ŵ = 0.11 mm1
b = 20.4270 (8) ÅT = 150 K
c = 17.8175 (5) Å0.30 × 0.14 × 0.12 mm
β = 104.145 (2)°
Data collection top
Nonius KappaCCD
diffractometer
7044 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3758 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.988Rint = 0.073
7253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05412 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 0.99Δρmax = 0.29 e Å3
7044 reflectionsΔρmin = 0.35 e Å3
461 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F12A0.92767 (18)0.06141 (7)0.57392 (7)0.0448 (4)
O1A0.9098 (2)0.11920 (8)0.36102 (9)0.0388 (5)
C1A0.8666 (3)0.11698 (11)0.42060 (12)0.0275 (5)
N1A0.8933 (2)0.17057 (9)0.47236 (10)0.0253 (4)
C11A0.7887 (3)0.05768 (11)0.44252 (12)0.0258 (5)
C12A0.8199 (3)0.03140 (11)0.51633 (13)0.0297 (6)
C13A0.7479 (3)0.02385 (12)0.53475 (14)0.0359 (6)
C14A0.6365 (3)0.05401 (13)0.47674 (17)0.0418 (7)
C15A0.6029 (3)0.03026 (13)0.40146 (16)0.0420 (7)
C16A0.6804 (3)0.02463 (12)0.38468 (14)0.0342 (6)
C21A0.9919 (3)0.22331 (11)0.45829 (11)0.0236 (5)
N22A0.9235 (2)0.28159 (9)0.45101 (10)0.0287 (5)
C23A1.0123 (3)0.33207 (12)0.43746 (13)0.0342 (6)
C24A1.1639 (3)0.32577 (13)0.42965 (13)0.0349 (6)
C25A1.2317 (3)0.26415 (13)0.43804 (13)0.0352 (6)
C26A1.1448 (3)0.21177 (12)0.45259 (13)0.0321 (6)
O2A0.65467 (19)0.16567 (8)0.50477 (8)0.0318 (4)
C2A0.7900 (3)0.18421 (11)0.52090 (12)0.0245 (5)
C31A0.8623 (3)0.21946 (11)0.59384 (12)0.0232 (5)
C32A0.7764 (3)0.26714 (11)0.62237 (12)0.0265 (5)
C33A0.8292 (3)0.29479 (11)0.69417 (13)0.0298 (6)
C34A0.9731 (3)0.27489 (12)0.74019 (13)0.0296 (6)
C35A1.0635 (3)0.22887 (11)0.71327 (12)0.0270 (5)
C36A1.0083 (3)0.20202 (11)0.64032 (13)0.0269 (5)
F32A0.63827 (17)0.28808 (7)0.57553 (8)0.0344 (5)0.930 (4)
F36A1.116 (2)0.1620 (10)0.6169 (10)0.039 (7)0.070 (4)
F12B0.31068 (16)0.18071 (7)0.12221 (7)0.0369 (4)
O1B0.3159 (2)0.12056 (8)0.33481 (8)0.0338 (4)
C1B0.3604 (3)0.12421 (11)0.27555 (12)0.0255 (5)
N1B0.3322 (2)0.07118 (9)0.22248 (10)0.0226 (4)
C11B0.4330 (3)0.18597 (11)0.25606 (12)0.0228 (5)
C12B0.3982 (3)0.21466 (11)0.18366 (12)0.0261 (5)
C13B0.4425 (3)0.27768 (12)0.17050 (14)0.0331 (6)
C14B0.5283 (3)0.31302 (12)0.23274 (15)0.0369 (6)
C15B0.5697 (3)0.28541 (12)0.30609 (14)0.0343 (6)
C16B0.5208 (3)0.22290 (12)0.31764 (12)0.0276 (6)
O2B0.57182 (18)0.07792 (8)0.19299 (8)0.0287 (4)
C2B0.4384 (3)0.05560 (11)0.17782 (12)0.0226 (5)
C21B0.2073 (3)0.02639 (11)0.22749 (12)0.0240 (5)
N22B0.2476 (2)0.03583 (9)0.23967 (10)0.0266 (5)
C23B0.1297 (3)0.07729 (12)0.24352 (13)0.0303 (6)
C24B0.0238 (3)0.05737 (12)0.23712 (13)0.0297 (6)
C25B0.0610 (3)0.00756 (12)0.22546 (13)0.0313 (6)
C26B0.0564 (3)0.05108 (12)0.21966 (13)0.0282 (6)
F32B0.59097 (16)0.05992 (7)0.15023 (8)0.0399 (4)
C31B0.3775 (3)0.01289 (11)0.10932 (12)0.0231 (5)
C32B0.4601 (3)0.04192 (11)0.09556 (13)0.0268 (5)
C33B0.4133 (3)0.07992 (12)0.03030 (14)0.0329 (6)
C34B0.2801 (3)0.06149 (12)0.02500 (13)0.0322 (6)
C35B0.1943 (3)0.00704 (12)0.01392 (13)0.0301 (6)
C36B0.2418 (3)0.02922 (12)0.05330 (12)0.0272 (5)
H13A0.77380.04090.58590.043*
H14A0.58220.09150.48840.050*
H15A0.52710.05170.36170.050*
H16A0.65950.04010.33290.041*
H23A0.96720.37460.43300.041*
H24A1.22080.36270.41880.042*
H25A1.33700.25820.43380.042*
H26A1.18820.16890.45860.039*
H32A0.67780.28090.59080.032*0.070 (4)
H33A0.76820.32700.71200.036*
H34A1.01010.29290.79050.036*
H35A1.16280.21580.74480.032*
H36A1.07160.17110.62180.032*0.930 (4)
H13B0.41480.29620.12010.040*
H14B0.55930.35660.22530.044*
H15B0.63160.30960.34830.041*
H16B0.54720.20470.36820.033*
H23B0.15360.12260.25100.036*
H24B0.10270.08830.24080.036*
H25B0.16570.02240.22140.038*
H26B0.03470.09640.21060.034*
H33B0.47110.11790.02340.039*
H34B0.24720.08650.07110.039*
H35B0.10300.00540.05230.036*
H36B0.18090.06590.06140.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F12A0.0657 (11)0.0363 (9)0.0259 (7)0.0103 (8)0.0013 (7)0.0017 (6)
O1A0.0593 (13)0.0352 (11)0.0259 (9)0.0102 (9)0.0179 (8)0.0037 (8)
C1A0.0307 (14)0.0275 (14)0.0235 (12)0.0019 (11)0.0050 (10)0.0008 (10)
N1A0.0333 (12)0.0219 (11)0.0227 (10)0.0053 (9)0.0106 (8)0.0023 (8)
C11A0.0302 (14)0.0217 (13)0.0266 (12)0.0002 (11)0.0089 (10)0.0014 (10)
C12A0.0373 (15)0.0245 (14)0.0269 (12)0.0012 (12)0.0074 (11)0.0011 (10)
C13A0.0472 (17)0.0249 (14)0.0397 (14)0.0030 (13)0.0186 (13)0.0065 (11)
C14A0.0358 (16)0.0250 (15)0.0669 (19)0.0029 (12)0.0169 (14)0.0046 (13)
C15A0.0334 (16)0.0279 (16)0.0592 (18)0.0049 (12)0.0006 (13)0.0053 (13)
C16A0.0368 (15)0.0296 (15)0.0324 (13)0.0016 (12)0.0009 (11)0.0026 (11)
C21A0.0315 (14)0.0205 (13)0.0194 (11)0.0035 (11)0.0071 (10)0.0006 (9)
N22A0.0347 (12)0.0244 (12)0.0278 (10)0.0027 (9)0.0092 (9)0.0010 (8)
C23A0.0446 (17)0.0252 (14)0.0323 (13)0.0037 (12)0.0084 (11)0.0034 (11)
C24A0.0375 (16)0.0368 (17)0.0309 (13)0.0140 (13)0.0095 (11)0.0027 (11)
C25A0.0318 (15)0.0418 (17)0.0349 (14)0.0049 (13)0.0137 (11)0.0055 (12)
C26A0.0338 (15)0.0306 (15)0.0330 (13)0.0002 (12)0.0103 (11)0.0019 (11)
O2A0.0271 (10)0.0336 (10)0.0347 (9)0.0057 (8)0.0073 (7)0.0030 (7)
C2A0.0285 (14)0.0199 (13)0.0254 (12)0.0004 (11)0.0074 (10)0.0025 (9)
C31A0.0254 (13)0.0214 (13)0.0252 (11)0.0034 (10)0.0107 (10)0.0006 (9)
C32A0.0248 (13)0.0260 (14)0.0289 (12)0.0008 (11)0.0070 (10)0.0041 (10)
C33A0.0383 (16)0.0238 (14)0.0308 (13)0.0015 (11)0.0148 (11)0.0040 (10)
C34A0.0370 (15)0.0306 (15)0.0232 (12)0.0077 (12)0.0109 (11)0.0041 (10)
C35A0.0279 (14)0.0279 (14)0.0249 (12)0.0020 (11)0.0056 (10)0.0006 (10)
C36A0.0297 (14)0.0236 (13)0.0305 (12)0.0014 (11)0.0134 (11)0.0013 (10)
F32A0.0323 (10)0.0337 (10)0.0364 (9)0.0058 (7)0.0067 (7)0.0020 (7)
F36A0.049 (10)0.041 (10)0.028 (9)0.007 (7)0.009 (7)0.010 (7)
F12B0.0475 (9)0.0340 (9)0.0248 (7)0.0040 (7)0.0002 (6)0.0016 (6)
O1B0.0453 (11)0.0324 (10)0.0273 (9)0.0073 (8)0.0159 (8)0.0026 (7)
C1B0.0245 (13)0.0264 (14)0.0246 (12)0.0022 (11)0.0040 (10)0.0003 (10)
N1B0.0238 (11)0.0220 (11)0.0236 (10)0.0032 (8)0.0087 (8)0.0031 (8)
C11B0.0220 (12)0.0199 (13)0.0272 (12)0.0028 (10)0.0073 (10)0.0008 (10)
C12B0.0262 (14)0.0254 (14)0.0259 (12)0.0004 (10)0.0048 (10)0.0012 (10)
C13B0.0346 (15)0.0286 (15)0.0373 (14)0.0027 (12)0.0112 (12)0.0057 (11)
C14B0.0344 (16)0.0231 (15)0.0543 (17)0.0028 (12)0.0130 (13)0.0028 (12)
C15B0.0288 (15)0.0289 (15)0.0428 (15)0.0039 (11)0.0043 (11)0.0089 (11)
C16B0.0258 (13)0.0291 (14)0.0267 (12)0.0024 (11)0.0041 (10)0.0017 (10)
O2B0.0230 (10)0.0303 (10)0.0324 (9)0.0024 (8)0.0061 (7)0.0030 (7)
C2B0.0226 (13)0.0181 (12)0.0266 (12)0.0027 (10)0.0051 (10)0.0035 (9)
C21B0.0282 (14)0.0243 (14)0.0205 (11)0.0017 (11)0.0081 (9)0.0014 (9)
N22B0.0271 (11)0.0230 (12)0.0300 (10)0.0004 (9)0.0076 (8)0.0016 (8)
C23B0.0314 (15)0.0214 (13)0.0385 (14)0.0021 (11)0.0093 (11)0.0051 (11)
C24B0.0265 (14)0.0324 (15)0.0302 (13)0.0038 (11)0.0066 (10)0.0026 (11)
C25B0.0247 (14)0.0377 (16)0.0320 (13)0.0000 (12)0.0077 (10)0.0031 (11)
C26B0.0269 (14)0.0223 (13)0.0350 (13)0.0041 (11)0.0069 (10)0.0016 (10)
F32B0.0325 (8)0.0372 (9)0.0440 (8)0.0094 (7)0.0021 (7)0.0055 (7)
C31B0.0249 (13)0.0213 (13)0.0247 (11)0.0005 (10)0.0092 (10)0.0012 (9)
C32B0.0214 (13)0.0289 (14)0.0294 (12)0.0007 (11)0.0050 (10)0.0001 (10)
C33B0.0351 (16)0.0282 (14)0.0369 (14)0.0022 (12)0.0117 (12)0.0081 (11)
C34B0.0336 (15)0.0353 (16)0.0276 (13)0.0044 (12)0.0076 (11)0.0082 (11)
C35B0.0271 (14)0.0335 (15)0.0273 (12)0.0007 (12)0.0020 (10)0.0016 (11)
C36B0.0239 (13)0.0298 (14)0.0282 (12)0.0026 (11)0.0070 (10)0.0006 (10)
Geometric parameters (Å, º) top
F12A—C12A1.358 (3)F12B—C12B1.362 (2)
O1A—C1A1.211 (2)O1B—C1B1.214 (2)
C1A—N1A1.414 (3)C1B—N1B1.419 (3)
C1A—C11A1.488 (3)C1B—C11B1.491 (3)
N1A—C2A1.422 (3)N1B—C2B1.399 (3)
N1A—C21A1.439 (3)N1B—C21B1.444 (3)
C11A—C12A1.385 (3)C11B—C12B1.381 (3)
C11A—C16A1.392 (3)C11B—C16B1.397 (3)
C12A—C13A1.371 (3)C12B—C13B1.381 (3)
C13A—C14A1.380 (4)C13B—C14B1.381 (3)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.389 (4)C14B—C15B1.388 (3)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.380 (3)C15B—C16B1.378 (3)
C15A—H15A0.9500C15B—H15B0.9500
C16A—H16A0.9500C16B—H16B0.9500
O2A—C2A1.208 (3)O2B—C2B1.220 (3)
C2A—C31A1.485 (3)C2B—C31B1.489 (3)
C21A—N22A1.324 (3)C21B—N22B1.323 (3)
C21A—C26A1.385 (3)C21B—C26B1.387 (3)
N22A—C23A1.348 (3)N22B—C23B1.349 (3)
C23A—C24A1.372 (4)C23B—C24B1.380 (3)
C23A—H23A0.9500C23B—H23B0.9500
C24A—C25A1.384 (3)C24B—C25B1.369 (3)
C24A—H24A0.9500C24B—H24B0.9500
C25A—C26A1.373 (3)C25B—C26B1.381 (3)
C25A—H25A0.9500C25B—H25B0.9500
C26A—H26A0.9500C26B—H26B0.9500
C31A—C36A1.388 (3)F32B—C32B1.360 (3)
C31A—C32A1.399 (3)C31B—C32B1.386 (3)
C32A—C33A1.371 (3)C31B—C36B1.391 (3)
C32A—H32A0.9500C32B—C33B1.374 (3)
C33A—C34A1.384 (3)C33B—C34B1.381 (3)
C33A—H33A0.9500C33B—H33B0.9500
C34A—C35A1.387 (3)C34B—C35B1.383 (3)
C34A—H34A0.9500C34B—H34B0.9500
C35A—C36A1.384 (3)C35B—C36B1.383 (3)
C35A—H35A0.9500C35B—H35B0.9500
C36A—H36A0.9500C36B—H36B0.9500
O1A—C1A—N1A120.4 (2)O1B—C1B—N1B119.5 (2)
O1A—C1A—C11A121.4 (2)O1B—C1B—C11B119.99 (19)
N1A—C1A—C11A118.18 (18)N1B—C1B—C11B120.36 (18)
C1A—N1A—C2A121.35 (18)C2B—N1B—C1B121.40 (18)
C1A—N1A—C21A118.44 (16)C2B—N1B—C21B120.51 (17)
C2A—N1A—C21A117.10 (17)C1B—N1B—C21B116.97 (16)
C12A—C11A—C16A117.1 (2)C12B—C11B—C16B117.3 (2)
C12A—C11A—C1A124.6 (2)C12B—C11B—C1B124.6 (2)
C16A—C11A—C1A118.2 (2)C16B—C11B—C1B117.23 (19)
F12A—C12A—C13A117.7 (2)F12B—C12B—C13B117.6 (2)
F12A—C12A—C11A118.8 (2)F12B—C12B—C11B119.1 (2)
C13A—C12A—C11A123.4 (2)C13B—C12B—C11B123.2 (2)
C12A—C13A—C14A118.0 (2)C14B—C13B—C12B118.1 (2)
C12A—C13A—H13A121.0C14B—C13B—H13B121.0
C14A—C13A—H13A121.0C12B—C13B—H13B121.0
C13A—C14A—C15A120.8 (2)C13B—C14B—C15B120.6 (2)
C13A—C14A—H14A119.6C13B—C14B—H14B119.7
C15A—C14A—H14A119.6C15B—C14B—H14B119.7
C16A—C15A—C14A119.6 (2)C16B—C15B—C14B119.9 (2)
C16A—C15A—H15A120.2C16B—C15B—H15B120.1
C14A—C15A—H15A120.2C14B—C15B—H15B120.1
C15A—C16A—C11A121.0 (2)C15B—C16B—C11B120.9 (2)
C15A—C16A—H16A119.5C15B—C16B—H16B119.5
C11A—C16A—H16A119.5C11B—C16B—H16B119.5
N22A—C21A—C26A124.5 (2)O2B—C2B—N1B121.36 (19)
N22A—C21A—N1A114.50 (19)O2B—C2B—C31B122.12 (19)
C26A—C21A—N1A121.0 (2)N1B—C2B—C31B116.47 (19)
C21A—N22A—C23A116.1 (2)N22B—C21B—C26B125.1 (2)
N22A—C23A—C24A124.0 (2)N22B—C21B—N1B116.36 (19)
N22A—C23A—H23A118.0C26B—C21B—N1B118.6 (2)
C24A—C23A—H23A118.0C21B—N22B—C23B115.8 (2)
C23A—C24A—C25A118.3 (2)N22B—C23B—C24B123.4 (2)
C23A—C24A—H24A120.9N22B—C23B—H23B118.3
C25A—C24A—H24A120.9C24B—C23B—H23B118.3
C26A—C25A—C24A119.1 (2)C25B—C24B—C23B119.2 (2)
C26A—C25A—H25A120.4C25B—C24B—H24B120.4
C24A—C25A—H25A120.4C23B—C24B—H24B120.4
C25A—C26A—C21A118.0 (2)C24B—C25B—C26B118.8 (2)
C25A—C26A—H26A121.0C24B—C25B—H25B120.6
C21A—C26A—H26A121.0C26B—C25B—H25B120.6
O2A—C2A—N1A121.6 (2)C25B—C26B—C21B117.7 (2)
O2A—C2A—C31A122.89 (19)C25B—C26B—H26B121.2
N1A—C2A—C31A115.42 (19)C21B—C26B—H26B121.2
C36A—C31A—C32A117.3 (2)C32B—C31B—C36B117.2 (2)
C36A—C31A—C2A122.0 (2)C32B—C31B—C2B121.4 (2)
C32A—C31A—C2A120.3 (2)C36B—C31B—C2B121.3 (2)
C33A—C32A—C31A122.5 (2)F32B—C32B—C33B118.5 (2)
C33A—C32A—H32A118.7F32B—C32B—C31B118.4 (2)
C31A—C32A—H32A118.7C33B—C32B—C31B123.1 (2)
C32A—C33A—C34A118.8 (2)C32B—C33B—C34B118.3 (2)
C32A—C33A—H33A120.6C32B—C33B—H33B120.8
C34A—C33A—H33A120.6C34B—C33B—H33B120.8
C33A—C34A—C35A120.4 (2)C33B—C34B—C35B120.6 (2)
C33A—C34A—H34A119.8C33B—C34B—H34B119.7
C35A—C34A—H34A119.8C35B—C34B—H34B119.7
C36A—C35A—C34A119.8 (2)C34B—C35B—C36B119.7 (2)
C36A—C35A—H35A120.1C34B—C35B—H35B120.1
C34A—C35A—H35A120.1C36B—C35B—H35B120.1
C35A—C36A—C31A121.1 (2)C35B—C36B—C31B121.1 (2)
C35A—C36A—H36A119.4C35B—C36B—H36B119.5
C31A—C36A—H36A119.4C31B—C36B—H36B119.5
O1A—C1A—N1A—C2A150.7 (2)O1B—C1B—N1B—C21B21.0 (3)
C11A—C1A—N1A—C2A31.0 (3)C11B—C1B—N1B—C21B154.2 (2)
O1A—C1A—N1A—C21A8.8 (3)O1B—C1B—C11B—C12B135.7 (2)
C11A—C1A—N1A—C21A169.5 (2)N1B—C1B—C11B—C12B39.5 (3)
O1A—C1A—C11A—C12A137.7 (2)O1B—C1B—C11B—C16B32.8 (3)
N1A—C1A—C11A—C12A40.6 (3)N1B—C1B—C11B—C16B152.0 (2)
O1A—C1A—C11A—C16A40.0 (3)C16B—C11B—C12B—F12B178.99 (18)
N1A—C1A—C11A—C16A141.7 (2)C1B—C11B—C12B—F12B10.5 (3)
C16A—C11A—C12A—F12A178.5 (2)C16B—C11B—C12B—C13B1.7 (3)
C1A—C11A—C12A—F12A0.8 (3)C1B—C11B—C12B—C13B166.9 (2)
C16A—C11A—C12A—C13A1.4 (4)F12B—C12B—C13B—C14B178.6 (2)
C1A—C11A—C12A—C13A179.1 (2)C11B—C12B—C13B—C14B1.2 (4)
F12A—C12A—C13A—C14A179.0 (2)C12B—C13B—C14B—C15B0.7 (4)
C11A—C12A—C13A—C14A1.1 (4)C13B—C14B—C15B—C16B2.0 (4)
C12A—C13A—C14A—C15A2.2 (4)C14B—C15B—C16B—C11B1.6 (4)
C13A—C14A—C15A—C16A0.8 (4)C12B—C11B—C16B—C15B0.2 (3)
C14A—C15A—C16A—C11A1.8 (4)C1B—C11B—C16B—C15B169.2 (2)
C12A—C11A—C16A—C15A2.8 (4)C1B—N1B—C2B—O2B14.6 (3)
C1A—C11A—C16A—C15A179.3 (2)C21B—N1B—C2B—O2B153.0 (2)
C1A—N1A—C21A—N22A123.0 (2)C1B—N1B—C2B—C31B162.91 (19)
C2A—N1A—C21A—N22A37.3 (3)C21B—N1B—C2B—C31B29.5 (3)
C1A—N1A—C21A—C26A56.5 (3)C2B—N1B—C21B—N22B45.8 (3)
C2A—N1A—C21A—C26A143.2 (2)C1B—N1B—C21B—N22B122.3 (2)
C26A—C21A—N22A—C23A0.3 (3)C2B—N1B—C21B—C26B134.4 (2)
N1A—C21A—N22A—C23A179.74 (18)C1B—N1B—C21B—C26B57.5 (3)
C21A—N22A—C23A—C24A1.3 (3)C26B—C21B—N22B—C23B0.9 (3)
N22A—C23A—C24A—C25A1.7 (4)N1B—C21B—N22B—C23B179.40 (18)
C23A—C24A—C25A—C26A1.0 (3)C21B—N22B—C23B—C24B1.4 (3)
C24A—C25A—C26A—C21A0.1 (3)N22B—C23B—C24B—C25B0.7 (3)
N22A—C21A—C26A—C25A0.3 (3)C23B—C24B—C25B—C26B0.7 (3)
N1A—C21A—C26A—C25A179.12 (19)C24B—C25B—C26B—C21B1.2 (3)
C1A—N1A—C2A—O2A23.5 (3)N22B—C21B—C26B—C25B0.4 (3)
C21A—N1A—C2A—O2A136.3 (2)N1B—C21B—C26B—C25B179.31 (18)
C1A—N1A—C2A—C31A153.5 (2)O2B—C2B—C31B—C32B51.8 (3)
C21A—N1A—C2A—C31A46.8 (3)N1B—C2B—C31B—C32B130.8 (2)
O2A—C2A—C31A—C36A132.2 (2)O2B—C2B—C31B—C36B123.1 (2)
N1A—C2A—C31A—C36A44.8 (3)N1B—C2B—C31B—C36B54.4 (3)
O2A—C2A—C31A—C32A40.7 (3)C36B—C31B—C32B—F32B178.40 (19)
N1A—C2A—C31A—C32A142.4 (2)C2B—C31B—C32B—F32B6.5 (3)
C36A—C31A—C32A—C33A2.1 (3)C36B—C31B—C32B—C33B0.3 (3)
C2A—C31A—C32A—C33A171.1 (2)C2B—C31B—C32B—C33B175.4 (2)
C31A—C32A—C33A—C34A0.1 (3)F32B—C32B—C33B—C34B179.9 (2)
C32A—C33A—C34A—C35A1.4 (3)C31B—C32B—C33B—C34B1.8 (4)
C33A—C34A—C35A—C36A0.9 (3)C32B—C33B—C34B—C35B1.5 (4)
C34A—C35A—C36A—C31A1.2 (3)C33B—C34B—C35B—C36B0.2 (4)
C32A—C31A—C36A—C35A2.6 (3)C34B—C35B—C36B—C31B1.8 (3)
C2A—C31A—C36A—C35A170.4 (2)C32B—C31B—C36B—C35B1.5 (3)
O1B—C1B—N1B—C2B147.0 (2)C2B—C31B—C36B—C35B173.6 (2)
C11B—C1B—N1B—C2B37.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13A—H13A···O1Bi0.952.413.201 (3)141
C14A—H14A···O2Ai0.952.593.493 (3)158
C16A—H16A···O2B0.952.543.488 (3)174
C33A—H33A···O2Bii0.952.563.435 (3)154
C34A—H34A···O1Aii0.952.473.194 (3)133
C35A—H35A···Cg1iii0.952.883.591 (3)133
C16B—H16B···O2A0.952.513.456 (3)172
C25B—H25B···O2Biv0.952.503.434 (3)169
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H12F2N2O2
Mr338.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.7421 (3), 20.4270 (8), 17.8175 (5)
β (°) 104.145 (2)
V3)3085.29 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.14 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.850, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7253, 7044, 3758
Rint0.073
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.150, 0.99
No. of reflections7044
No. of parameters461
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.35

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SORTX (McArdle, 1995), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PREP8 (Ferguson, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13A—H13A···O1Bi0.952.413.201 (3)141
C14A—H14A···O2Ai0.952.593.493 (3)158
C16A—H16A···O2B0.952.543.488 (3)174
C33A—H33A···O2Bii0.952.563.435 (3)154
C34A—H34A···O1Aii0.952.473.194 (3)133
C35A—H35A···Cg1iii0.952.883.591 (3)133
C16B—H16B···O2A0.952.513.456 (3)172
C25B—H25B···O2Biv0.952.503.434 (3)169
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: alough@chem.utoronto.ca.

Acknowledgements

JFG thanks Dublin City University for grants in aid of undergraduate research. Thanks especially to Mr Damien McGuirk for providing excellent technical support in the undergraduate research laboratories

References

First citationAkinboye, E. S., Butcher, R. J., Brandy, Y., Adesiyun, T. A. & Bakare, O. (2009). Acta Cryst. E65, o24.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkinboye, E. S., Butcher, R. J., Wright, D. A., Brandy, Y. & Bakare, O. (2009). Acta Cryst. E65, o277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDonnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerguson, G. (1998). PREP8. University of Guelph, Canada.  Google Scholar
First citationGallagher, J. F., Donnelly, K. & Lough, A. J. (2009). Acta Cryst. E65, o102–o103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGallagher, J. F., McMahon, J., Anderson, F. P. & Lough, A. J. (2008). Acta Cryst. E64, o2394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMcMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493–o497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoody, C. J., Miah, S., Slawin, A. M. Z., Mansfield, D. J. & Richards, I. C. (1998). Tetrahedron, 54, 9689–9700.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002a). Acta Cryst. E58, o357–o358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002b). Acta Cryst. E58, o377–o379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeng, Y.-B., Wang, J.-K. & Wang, Y.-F. (2006). Acta Cryst. E62, o1868–o1869.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o486-o487
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds