organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benz­yl­oxy-1-naphthaldehyde

aDepartment of Chemical Engineering, Northwest University, Taibai North Road 229, 710069 Xi-An, People's Republic of China, and bDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China
*Correspondence e-mail: ping_an1718@yahoo.com.cn

(Received 25 December 2008; accepted 7 February 2009; online 18 February 2009)

In the title compound, C18H14O2, the dihedral angle between the phenyl and naphthyl ring systems is 21.8 (3)°. The packing of mol­ecules in the crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the preparation of 2-benz­yloxy-1-naphthaldehyde, see: Quideau et al. (2001[Quideau, S., Pouységu, L., Oxoby, M. & Looney, M. A. (2001). Tetrahedron, 57, 319-329.]). For synthetic use of the title compound, see: Knight & Little (2001[Knight, D. W. & Little, P. B. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1771-1777.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14O2

  • Mr = 262.29

  • Monoclinic, P 21 /c

  • a = 10.427 (7) Å

  • b = 8.128 (6) Å

  • c = 15.787 (11) Å

  • β = 94.746 (11)°

  • V = 1333.3 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.39 × 0.26 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.987

  • 5088 measured reflections

  • 2262 independent reflections

  • 1354 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.285

  • S = 1.04

  • 2262 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.97 2.48 3.381 (4) 155
C14—H14⋯O1i 0.93 2.72 3.544 (5) 148
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]).

Supporting information


Comment top

The title compound, 2-benzyloxy-1-naphthaldehyde, was obtained by benzylation of 2-hydroxy-1-naphthaldehyde with benzyl bromide (Quideau et al., 2001) and used for alkylation of position 4 in the naphthyl ring system. It has also been used for the intramolecular trapping of benzynes to yield some novel xanthenes (Knight & Little, 2001).

In the title compound, C18H14O2, the dihedral angle between the phenyl and naphthyl ring systems is 21.8 (3)°. The packing of molecules in the crystal structure is stabilized by weak intermolecular C—H···O hydrogen bonds.

Related literature top

For the preparation of 2-benzyloxy-1-naphthaldehyde, see: Quideau et al. (2001). For synthetic use of the title compound, see: Knight & Little (2001).

Experimental top

To a stirred solution of commercially available 2-hydroxy-1-naphthaldehyde (4.30 g, 25.0 mmol) in N,N-dimethylformamide (100.0 cm3) was added potassium carbonate (3.82 g, 27.6 mmol) and benzyl bromide (3.0 cm3, 25.0 mmol), and the mixture was heated for 4 h at 90–100°C. The solution was filtered through celite and the solvent removed in vacuo. The residue was dissolved with Et2O (160 cm3), washed with 1 M NaOH (110 cm3), brine (2× 110 cm3), and dried over Na2SO4. Evaporation of the solvent afforded the title compound as a light yellow powder (6.0 g, 91%). The melting point and the spectroscopic data of the title compound were consisted with the reported literature (Quideau et al., 2001).

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97Å and with Uiso(H) = 1.2Ueq(C). The values of R[F2>2σ(F2)] and wR(F2) are 0.084 and 0.285, respectively; these high values may be due to the poor quality of the crystals.

Computing details top

Data collection: SMART(Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Mercury (Macrae et al., 2006) and CAMERON (Watkin et al., 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the b axis. Dotted lines indicate hydrogen bonds.
2-Benzyloxy-1-naphthaldehyde top
Crystal data top
C18H14O2F(000) = 552
Mr = 262.29Dx = 1.307 Mg m3
Monoclinic, P21/cMelting point: 393(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.427 (7) ÅCell parameters from 1554 reflections
b = 8.128 (6) Åθ = 2.6–24.3°
c = 15.787 (11) ŵ = 0.08 mm1
β = 94.746 (11)°T = 296 K
V = 1333.3 (16) Å3Block, colourless
Z = 40.39 × 0.26 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2262 independent reflections
Radiation source: fine-focus sealed tube1354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 712
Tmin = 0.968, Tmax = 0.987k = 96
5088 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.285H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.18P)2 + 0.612P]
where P = (Fo2 + 2Fc2)/3
2262 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C18H14O2V = 1333.3 (16) Å3
Mr = 262.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.427 (7) ŵ = 0.08 mm1
b = 8.128 (6) ÅT = 296 K
c = 15.787 (11) Å0.39 × 0.26 × 0.16 mm
β = 94.746 (11)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2262 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1354 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.987Rint = 0.038
5088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.285H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
2262 reflectionsΔρmin = 0.53 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6120 (3)0.2057 (4)0.65206 (15)0.0658 (10)
O20.6321 (2)0.1063 (4)0.41483 (14)0.0531 (8)
C10.4002 (3)0.3376 (5)0.5290 (2)0.0411 (9)
C20.3808 (4)0.4033 (5)0.6101 (2)0.0518 (11)
H20.44230.38370.65510.062*
C30.2749 (4)0.4942 (6)0.6241 (3)0.0630 (12)
H30.26410.53350.67840.076*
C40.1821 (4)0.5289 (7)0.5572 (3)0.0716 (14)
H40.11030.59180.56710.086*
C50.1967 (4)0.4710 (5)0.4783 (3)0.0577 (11)
H50.13490.49520.43430.069*
C60.3053 (3)0.3737 (6)0.4616 (2)0.0504 (11)
C70.3228 (3)0.3153 (5)0.3794 (2)0.0523 (11)
H70.26080.33950.33540.063*
C80.4275 (3)0.2244 (6)0.3622 (2)0.0539 (11)
H80.43540.18510.30750.065*
C90.5238 (3)0.1904 (5)0.4280 (2)0.0431 (10)
C100.5100 (3)0.2424 (5)0.5110 (2)0.0392 (9)
C110.6122 (3)0.1927 (6)0.5756 (2)0.0514 (11)
H110.68530.14590.55560.062*
C120.6621 (3)0.0652 (6)0.3305 (2)0.0575 (12)
H12A0.63810.15480.29180.069*
H12B0.61540.03260.31080.069*
C130.8049 (3)0.0350 (5)0.3337 (2)0.0468 (10)
C140.8757 (4)0.1189 (6)0.2765 (2)0.0571 (12)
H140.83480.19020.23680.069*
C151.0079 (4)0.0954 (7)0.2792 (3)0.0713 (15)
H151.05490.14840.23970.086*
C161.0699 (4)0.0047 (6)0.3390 (3)0.0635 (13)
H161.15890.01630.34120.076*
C171.0006 (4)0.0884 (6)0.3960 (3)0.0630 (12)
H171.04230.15820.43600.076*
C180.8681 (4)0.0675 (6)0.3932 (2)0.0579 (12)
H180.82140.12320.43190.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0596 (17)0.099 (3)0.0374 (14)0.0078 (16)0.0065 (11)0.0031 (14)
O20.0498 (15)0.075 (2)0.0352 (13)0.0178 (14)0.0062 (10)0.0012 (12)
C10.0352 (18)0.047 (3)0.0415 (17)0.0085 (16)0.0054 (14)0.0049 (17)
C20.045 (2)0.062 (3)0.050 (2)0.003 (2)0.0112 (16)0.0008 (19)
C30.058 (2)0.066 (3)0.068 (3)0.003 (2)0.023 (2)0.001 (2)
C40.046 (2)0.082 (4)0.090 (3)0.008 (2)0.024 (2)0.003 (3)
C50.043 (2)0.056 (3)0.075 (3)0.0013 (19)0.0041 (18)0.008 (2)
C60.0307 (17)0.068 (3)0.052 (2)0.0035 (17)0.0040 (15)0.011 (2)
C70.040 (2)0.067 (3)0.047 (2)0.0013 (19)0.0074 (15)0.010 (2)
C80.045 (2)0.082 (3)0.0340 (18)0.002 (2)0.0007 (15)0.0032 (18)
C90.0345 (17)0.055 (3)0.0393 (18)0.0040 (17)0.0035 (13)0.0078 (17)
C100.0328 (17)0.047 (2)0.0373 (17)0.0047 (15)0.0012 (13)0.0028 (16)
C110.0386 (19)0.076 (3)0.0386 (19)0.0002 (19)0.0005 (14)0.0038 (19)
C120.043 (2)0.096 (4)0.0337 (17)0.003 (2)0.0069 (14)0.004 (2)
C130.0395 (18)0.066 (3)0.0355 (16)0.0014 (18)0.0055 (14)0.0021 (18)
C140.045 (2)0.081 (4)0.047 (2)0.005 (2)0.0070 (16)0.015 (2)
C150.044 (2)0.107 (4)0.064 (3)0.003 (2)0.0155 (19)0.017 (3)
C160.043 (2)0.087 (4)0.061 (2)0.010 (2)0.0049 (18)0.002 (2)
C170.056 (2)0.075 (3)0.057 (2)0.015 (2)0.0031 (18)0.008 (2)
C180.054 (2)0.071 (3)0.050 (2)0.002 (2)0.0091 (17)0.010 (2)
Geometric parameters (Å, º) top
O1—C111.211 (4)C8—H80.9300
O2—C91.351 (4)C9—C101.395 (5)
O2—C121.433 (4)C10—C111.471 (5)
C1—C21.417 (5)C11—H110.9300
C1—C61.422 (5)C12—C131.506 (5)
C1—C101.430 (5)C12—H12A0.9700
C2—C31.362 (6)C12—H12B0.9700
C2—H20.9300C13—C181.382 (6)
C3—C41.400 (6)C13—C141.391 (5)
C3—H30.9300C14—C151.389 (5)
C4—C51.351 (6)C14—H140.9300
C4—H40.9300C15—C161.367 (6)
C5—C61.424 (5)C15—H150.9300
C5—H50.9300C16—C171.380 (6)
C6—C71.407 (5)C16—H160.9300
C7—C81.365 (5)C17—C181.389 (5)
C7—H70.9300C17—H170.9300
C8—C91.412 (5)C18—H180.9300
C9—O2—C12120.7 (3)C9—C10—C11116.3 (3)
C2—C1—C6117.1 (3)C1—C10—C11123.8 (3)
C2—C1—C10124.1 (3)O1—C11—C10127.3 (4)
C6—C1—C10118.8 (3)O1—C11—H11116.3
C3—C2—C1121.9 (4)C10—C11—H11116.3
C3—C2—H2119.0O2—C12—C13107.3 (3)
C1—C2—H2119.0O2—C12—H12A110.2
C2—C3—C4120.4 (4)C13—C12—H12A110.2
C2—C3—H3119.8O2—C12—H12B110.2
C4—C3—H3119.8C13—C12—H12B110.2
C5—C4—C3120.1 (4)H12A—C12—H12B108.5
C5—C4—H4120.0C18—C13—C14119.2 (3)
C3—C4—H4120.0C18—C13—C12122.4 (3)
C4—C5—C6121.1 (4)C14—C13—C12118.3 (3)
C4—C5—H5119.5C15—C14—C13119.4 (4)
C6—C5—H5119.5C15—C14—H14120.3
C7—C6—C1119.0 (3)C13—C14—H14120.3
C7—C6—C5121.6 (3)C16—C15—C14121.0 (4)
C1—C6—C5119.4 (4)C16—C15—H15119.5
C8—C7—C6122.2 (3)C14—C15—H15119.5
C8—C7—H7118.9C15—C16—C17120.0 (4)
C6—C7—H7118.9C15—C16—H16120.0
C7—C8—C9119.4 (3)C17—C16—H16120.0
C7—C8—H8120.3C16—C17—C18119.5 (4)
C9—C8—H8120.3C16—C17—H17120.2
O2—C9—C10116.8 (3)C18—C17—H17120.2
O2—C9—C8122.5 (3)C13—C18—C17120.8 (4)
C10—C9—C8120.6 (3)C13—C18—H18119.6
C9—C10—C1119.9 (3)C17—C18—H18119.6
C6—C1—C2—C31.4 (6)O2—C9—C10—C112.9 (5)
C10—C1—C2—C3179.6 (4)C8—C9—C10—C11176.6 (4)
C1—C2—C3—C41.4 (7)C2—C1—C10—C9176.6 (4)
C2—C3—C4—C50.5 (7)C6—C1—C10—C91.5 (5)
C3—C4—C5—C60.4 (7)C2—C1—C10—C114.0 (6)
C2—C1—C6—C7178.0 (4)C6—C1—C10—C11177.9 (3)
C10—C1—C6—C70.2 (6)C9—C10—C11—O1169.9 (4)
C2—C1—C6—C50.5 (5)C1—C10—C11—O19.6 (7)
C10—C1—C6—C5178.8 (3)C9—O2—C12—C13158.2 (3)
C4—C5—C6—C7178.8 (4)O2—C12—C13—C1849.5 (6)
C4—C5—C6—C10.3 (6)O2—C12—C13—C14127.9 (4)
C1—C6—C7—C80.3 (6)C18—C13—C14—C151.4 (6)
C5—C6—C7—C8178.8 (4)C12—C13—C14—C15178.8 (4)
C6—C7—C8—C91.6 (6)C13—C14—C15—C162.2 (7)
C12—O2—C9—C10172.4 (3)C14—C15—C16—C172.2 (8)
C12—O2—C9—C88.1 (6)C15—C16—C17—C181.3 (7)
C7—C8—C9—O2177.6 (4)C14—C13—C18—C170.6 (7)
C7—C8—C9—C102.9 (6)C12—C13—C18—C17177.9 (4)
O2—C9—C10—C1177.6 (3)C16—C17—C18—C130.5 (7)
C8—C9—C10—C12.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.972.483.381 (4)155
C14—H14···O1i0.932.723.544 (5)148
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H14O2
Mr262.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.427 (7), 8.128 (6), 15.787 (11)
β (°) 94.746 (11)
V3)1333.3 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.39 × 0.26 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.968, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5088, 2262, 1354
Rint0.038
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.285, 1.04
No. of reflections2262
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.53

Computer programs: SMART(Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006) and CAMERON (Watkin et al., 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O1i0.972.483.381 (4)155.4
C14—H14···O1i0.932.723.544 (5)148.3
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationKnight, D. W. & Little, P. B. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1771–1777.  Web of Science CrossRef
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationQuideau, S., Pouységu, L., Oxoby, M. & Looney, M. A. (2001). Tetrahedron, 57, 319–329.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds