organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o595-o596

3,3-Ethyl­enedi­thio-3,3a,4,5,10,10b-hexa­hydro-2H-furo[2,3-a]carbazole

aDepartment of Chemistry, Faculty of Technical Education, Mersin University, 33500 Mersin, Turkey, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and cDepartment of Chemistry Education, Faculty of Education, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 29 January 2009; accepted 19 February 2009; online 25 February 2009)

The title compound, C16H17NOS2, consists of a carbazole skeleton with tetra­hydro­furan and dithiol­ane rings. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 1.57 (15)°. The cyclo­hexenone and tetra­hydro­furan rings have envelope conformations, while the dithiol­ane ring adopts a twist conformation. In the crystal structure, pairs of weak inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers with R22(16) ring motifs. Weak C—H⋯π inter­actions may further stabilize the structure.

Related literature

For general background, see: Phillipson & Zenk (1980[Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.]); Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch 8 and 11. New York: Wiley.]); Abraham (1975[Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, ch. 7 and 8. New York: Marcel Decker.]). For related structures, see: Hökelek et al. (1994[Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.], 1998[Hökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297-1299.], 1999[Hökelek, T., Patir, S. & Uludauğ, N. (1999). Acta Cryst. C55, 114-116.], 2004[Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25-o27.], 2006[Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791-o793.]); Patır et al. (1997[Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239-1242.]); Hökelek & Patır (1999[Hökelek, T. & Patir, S. (1999). Acta Cryst. C55, 675-677.],2002[Hökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374-o376.]); Çaylak et al. (2007[Çaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913-o3914.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.])

[Scheme 1]

Experimental

Crystal data
  • C16H17NOS2

  • Mr = 303.43

  • Orthorhombic, P b c n

  • a = 21.7617 (5) Å

  • b = 8.4992 (2) Å

  • c = 15.2115 (3) Å

  • V = 2813.47 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 294 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.913, Tmax = 0.944

  • 8196 measured reflections

  • 2289 independent reflections

  • 1105 reflections with I > 2σ(I)

  • Rint = 0.149

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 0.98

  • 2289 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯S2i 0.81 (4) 2.71 (4) 3.487 (4) 161 (4)
C3A—H3ACg2ii 0.98 2.85 3.725 (4) 149
C4—H4BCg1iii 0.97 2.79 3.556 (5) 136
C5—H5ACg1ii 0.97 2.96 3.714 (5) 135
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y+2, -z; (iii) [-x, y, -z+{\script{1\over 2}}]. Cg1 and Cg2 are centroids of the C5b/C6–C9/C9a and C5a/C5b/C9a/N10/C10a rings, respectively.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Phillipson & Zenk, 1980; Saxton, 1983; Abraham, 1975). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been the subject of much interest in our laboratory. These include 1,2,3,4-tetrahydrocarbazole-1-spiro-2'-[1,3]dithiolane, (II) (Hökelek et al., 1994), N-(2-methoxyethyl)-N-{2,3,4,9-tetrahydrospiro[1H-carbazole-1, 2-(1,3)dithiolane]-4-yl}benzene-sulfonamide, (III) (Patır et al., 1997), spiro[carbazole-1(2H),2'-[1,3]-dithiolan]-4(3H)-one, (IV) (Hökelek et al., 1998), 9-acetonyl-3-ethylidene-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3] dithiolan]-4-one, (V) (Hökelek et al., 1999), N-(2,2-dimethoxyethyl)-N -{9-methoxymethyl-1,2,3,4-tetrahydrospiro[carbazole-1,2'-[1,3]dithiolan] -4-yl}benzamide, (VI) (Hökelek & Patır, 1999), 3a,4,10,10b-tetrahydro-2H -furo[2,3-a]carbazol-5(3H)-one, (VII) (Çaylak et al., 2007); also the pentacyclic compounds 6-ethyl-4-(2-methoxyethyl)-2,6-methano-5-oxo-hexahydro- pyrrolo(2,3 - d)carbazole-1-spiro-2'-(1,3)dithiolane, (VIII) (Hökelek & Patır, 2002), N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan-2-yl)-1,2, 3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indol-2-one, (IX) (Hökelek et al., 2004) and 4-ethyl-6,6-ethylenedithio-2-(2-methoxyethyl)-7-methoxy- methylene-2,3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indol-3-one, (X) (Hökelek et al., 2006). The title compound, (I), may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. It consists of a carbazole skeleton with tetrahydrofuran and dithiolane rings. The bonds N10—C9a [1.378 (5) Å] and N10—C10a [1.371 (5) Å] generally agree with those in compounds (II)-(X). In all structures atom N10 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C5b/C6—C9/C9a) and B (C5a/C5b/C9a/N10/C10a) are planar. They are also nearly coplanar with a dihedral angle of A/B = 1.57 (15)°. Rings C (C3a/C4/C5/C5a/C10a/C10b), D (O1/C2/C3/C3a/C10b) and E (S1/S2/C3/C11/C12) are not planar. Rings C and D have envelope conformations with atoms C4 and C3 displaced by -0.677 (4) Å (for ring C) and 0.568 (4) Å (for ring D) from the planes of the other ring atoms, respectively. Ring E adopts twisted conformation. Rings C and D have pseudo mirror planes running through atoms C10a and C4 (for ring C) and running through atom C3 and midpoint of O1—C10b bond (for ring D), as can be deduced from the torsion angles (Table 1).

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2) by forming the R22(16) ring motifs (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The weak C—H···π interactions (Table 1) may further stabilize the structure.

Related literature top

For general background, see: Phillipson & Zenk (1980); Saxton (1983); Abraham (1975). For related structures, see: Hökelek et al. (1994, 1998, 1999, 2004, 2006); Patır et al. (1997); Hökelek & Patır (1999,2002); Çaylak et al. (2007). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 and Cg2 are centroids of the C5b/C6–C9/C9a and C5a/C5b/C9a/N10/C10a rings, respectively.

Experimental top

For the preparation of the title compound, (I), sodium borohydride (5.00 g, 132.00 mmol) was added to a solution of ethyl 2-(1-oxo-2,3,4,9-tetrahydro-1H -carbazol-2yl)-1,3-dithiolane-2-carboxylate (5.00 g, 13.83 mmol) in THF (50 ml), and stirred at room temperature for 3 h. Then, the reaction mixture was poured into HCl (15%, 100 ml). The crude product was filtered and recrystallized from acetone (yield; 3.2 g, 77%, m.p. 468 K).

Refinement top

H10 atom (for NH) was located in difference synthesis and refined isotropically [N—H = 0.81 (3) Å and Uiso(H) = 0.043 (15) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
3,3-Ethylenedithio-3,3a,4,5,10,10b-hexahydro-2H- furo[2,3-a]carbazole top
Crystal data top
C16H17NOS2F(000) = 1280
Mr = 303.43Dx = 1.433 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 25 reflections
a = 21.7617 (5) Åθ = 9.3–16.7°
b = 8.4992 (2) ŵ = 0.37 mm1
c = 15.2115 (3) ÅT = 294 K
V = 2813.47 (11) Å3Prism, colorless
Z = 80.35 × 0.20 × 0.15 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1105 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.149
Graphite monochromatorθmax = 24.3°, θmin = 2.6°
Non–profiled ω scansh = 2525
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.913, Tmax = 0.944l = 170
8196 measured reflections3 standard reflections every 120 min
2289 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.8766P]
where P = (Fo2 + 2Fc2)/3
2289 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H17NOS2V = 2813.47 (11) Å3
Mr = 303.43Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 21.7617 (5) ŵ = 0.37 mm1
b = 8.4992 (2) ÅT = 294 K
c = 15.2115 (3) Å0.35 × 0.20 × 0.15 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
1105 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.149
Tmin = 0.913, Tmax = 0.9443 standard reflections every 120 min
8196 measured reflections intensity decay: 1%
2289 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.24 e Å3
2289 reflectionsΔρmin = 0.23 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32178 (5)0.10773 (14)0.23756 (8)0.0538 (4)
S20.33505 (5)0.00621 (14)0.05706 (9)0.0538 (3)
O10.48005 (12)0.0372 (3)0.1141 (2)0.0597 (9)
C20.43301 (17)0.0004 (5)0.1754 (3)0.0499 (12)
H2A0.44500.03100.23430.060*
H2B0.42500.11260.17530.060*
C30.37602 (18)0.0902 (5)0.1461 (3)0.0394 (11)
C3A0.40456 (17)0.2447 (4)0.1109 (3)0.0391 (11)
H3A0.37860.28650.06370.047*
C40.41256 (17)0.3698 (4)0.1817 (3)0.0402 (11)
H4A0.37240.40580.20080.048*
H4B0.43320.32380.23200.048*
C50.44962 (17)0.5095 (5)0.1485 (3)0.0423 (11)
H5A0.42720.56320.10230.051*
H5B0.45660.58340.19610.051*
C5A0.50957 (18)0.4512 (4)0.1140 (3)0.0375 (10)
C5B0.56863 (19)0.5223 (5)0.1102 (3)0.0402 (11)
C60.5923 (2)0.6705 (5)0.1333 (3)0.0487 (12)
H60.56640.74830.15520.058*
C70.6542 (2)0.6994 (6)0.1233 (3)0.0582 (14)
H70.67000.79730.13840.070*
C80.6930 (2)0.5844 (7)0.0909 (3)0.0608 (14)
H80.73470.60700.08500.073*
C90.6721 (2)0.4373 (5)0.0671 (3)0.0562 (13)
H90.69850.36070.04540.067*
C9A0.60977 (19)0.4090 (5)0.0771 (3)0.0426 (11)
C10A0.51613 (17)0.3010 (5)0.0837 (3)0.0365 (11)
C10B0.46569 (17)0.1854 (4)0.0715 (3)0.0401 (11)
H10B0.46000.16670.00850.048*
N100.57621 (16)0.2746 (5)0.0610 (3)0.0469 (10)
H100.5901 (17)0.196 (4)0.038 (3)0.043 (15)*
C110.2649 (2)0.0299 (5)0.1985 (3)0.0658 (14)
H11A0.25070.09470.24690.079*
H11B0.22990.02690.17500.079*
C120.2921 (2)0.1318 (5)0.1286 (3)0.0646 (14)
H12A0.25990.18510.09610.078*
H12B0.31880.21060.15450.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0516 (7)0.0527 (7)0.0570 (8)0.0052 (6)0.0097 (7)0.0042 (7)
S20.0541 (7)0.0516 (7)0.0558 (7)0.0125 (7)0.0012 (6)0.0103 (7)
O10.0462 (19)0.040 (2)0.093 (3)0.0094 (14)0.0183 (18)0.0122 (18)
C20.042 (2)0.042 (2)0.065 (3)0.001 (2)0.001 (2)0.008 (3)
C30.039 (3)0.036 (2)0.042 (3)0.003 (2)0.001 (2)0.001 (2)
C3A0.038 (2)0.035 (2)0.045 (3)0.0018 (19)0.002 (2)0.000 (2)
C40.034 (2)0.041 (3)0.047 (3)0.000 (2)0.004 (2)0.007 (2)
C50.048 (3)0.036 (2)0.043 (3)0.001 (2)0.001 (2)0.004 (2)
C5A0.040 (3)0.040 (3)0.033 (3)0.000 (2)0.002 (2)0.001 (2)
C5B0.050 (3)0.042 (3)0.029 (2)0.003 (2)0.001 (2)0.001 (2)
C60.059 (3)0.049 (3)0.038 (3)0.005 (2)0.002 (2)0.002 (2)
C70.067 (3)0.061 (3)0.046 (3)0.025 (3)0.002 (3)0.006 (3)
C80.047 (3)0.082 (4)0.054 (3)0.017 (3)0.000 (2)0.009 (3)
C90.049 (3)0.059 (3)0.061 (3)0.003 (3)0.007 (3)0.005 (3)
C9A0.044 (3)0.046 (3)0.038 (3)0.007 (2)0.001 (2)0.003 (2)
C10A0.034 (3)0.040 (3)0.036 (3)0.002 (2)0.002 (2)0.002 (2)
C10B0.042 (3)0.034 (2)0.045 (3)0.004 (2)0.004 (2)0.000 (2)
N100.042 (2)0.040 (2)0.059 (3)0.004 (2)0.011 (2)0.006 (2)
C110.051 (3)0.066 (4)0.080 (4)0.017 (3)0.005 (3)0.002 (3)
C120.070 (3)0.048 (3)0.076 (4)0.020 (3)0.004 (3)0.007 (3)
Geometric parameters (Å, º) top
S1—C31.830 (4)C5B—C61.405 (5)
S1—C111.803 (4)C6—H60.9300
S2—C31.817 (4)C7—C61.377 (5)
S2—C121.788 (4)C7—C81.383 (6)
O1—C21.421 (5)C7—H70.9300
O1—C10B1.450 (4)C8—H80.9300
C2—H2A0.9700C9—C81.379 (6)
C2—H2B0.9700C9—H90.9300
C3—C21.526 (5)C9A—C91.385 (5)
C3A—C31.548 (5)C9A—C5B1.408 (5)
C3A—C41.523 (5)C10A—C10B1.485 (5)
C3A—C10B1.544 (5)C10B—H10B0.9800
C3A—H3A0.9800N10—C10A1.371 (5)
C4—C51.522 (5)N10—C9A1.378 (5)
C4—H4A0.9700N10—H100.81 (3)
C4—H4B0.9700C11—H11A0.9700
C5—H5A0.9700C11—H11B0.9700
C5—H5B0.9700C12—C111.495 (6)
C5A—C51.491 (5)C12—H12A0.9700
C5A—C10A1.365 (5)C12—H12B0.9700
C5B—C5A1.421 (5)
C11—S1—C398.0 (2)C5B—C6—H6120.3
C12—S2—C394.1 (2)C7—C6—C5B119.3 (4)
C2—O1—C10B109.5 (3)C7—C6—H6120.3
O1—C2—C3106.3 (3)C6—C7—C8120.8 (4)
O1—C2—H2A110.5C6—C7—H7119.6
O1—C2—H2B110.5C8—C7—H7119.6
C3—C2—H2A110.5C9—C8—C7122.1 (4)
C3—C2—H2B110.5C9—C8—H8119.0
H2A—C2—H2B108.7C7—C8—H8119.0
S2—C3—S1106.7 (2)C8—C9—C9A116.9 (4)
C2—C3—S1110.1 (3)C8—C9—H9121.5
C2—C3—S2112.9 (3)C9A—C9—H9121.5
C2—C3—C3A101.7 (3)C9—C9A—C5B122.9 (4)
C3A—C3—S1116.9 (3)N10—C9A—C9130.1 (4)
C3A—C3—S2108.7 (3)N10—C9A—C5B107.1 (4)
C3—C3A—H3A109.3O1—C10B—C3A107.2 (3)
C4—C3A—C3113.2 (3)O1—C10B—C10A111.1 (3)
C4—C3A—H3A109.3O1—C10B—H10B108.9
C4—C3A—C10B113.8 (3)N10—C10A—C10B124.4 (4)
C10B—C3A—C3101.7 (3)C3A—C10B—H10B108.9
C10B—C3A—H3A109.3C5A—C10A—N10109.8 (4)
C3A—C4—H4A109.3C5A—C10A—C10B125.7 (4)
C3A—C4—H4B109.3C10A—C10B—C3A111.9 (3)
C5—C4—C3A111.8 (3)C10A—C10B—H10B108.9
C5—C4—H4A109.3C9A—N10—H10124 (3)
C5—C4—H4B109.3C10A—N10—C9A109.0 (4)
H4A—C4—H4B107.9C10A—N10—H10127 (3)
C4—C5—H5A109.9S1—C11—H11A109.7
C4—C5—H5B109.9S1—C11—H11B109.7
C5A—C5—C4108.7 (3)C12—C11—S1109.8 (3)
C5A—C5—H5A109.9C12—C11—H11A109.7
C5A—C5—H5B109.9C12—C11—H11B109.7
H5A—C5—H5B108.3H11A—C11—H11B108.2
C5B—C5A—C5131.6 (4)S2—C12—H12A110.3
C10A—C5A—C5121.4 (4)S2—C12—H12B110.3
C10A—C5A—C5B106.8 (4)C11—C12—S2107.1 (3)
C6—C5B—C5A134.6 (4)C11—C12—H12A110.3
C6—C5B—C9A118.0 (4)C11—C12—H12B110.3
C9A—C5B—C5A107.4 (4)H12A—C12—H12B108.6
C11—S1—C3—S215.4 (3)C5A—C5B—C6—C7177.8 (4)
C11—S1—C3—C2107.4 (3)C9A—C5B—C6—C70.2 (6)
C11—S1—C3—C3A137.2 (3)C5—C5A—C10A—N10176.3 (4)
C3—S1—C11—C1217.0 (4)C5—C5A—C10A—C10B7.2 (6)
C12—S2—C3—S136.2 (2)C5B—C5A—C10A—N100.1 (5)
C12—S2—C3—C284.9 (3)C5B—C5A—C10A—C10B176.6 (4)
C12—S2—C3—C3A163.1 (3)C6—C5B—C5A—C52.7 (8)
C3—S2—C12—C1149.5 (4)C6—C5B—C5A—C10A178.4 (5)
C10B—O1—C2—C322.4 (4)C9A—C5B—C5A—C5175.4 (4)
C2—O1—C10B—C3A0.5 (4)C9A—C5B—C5A—C10A0.2 (4)
C2—O1—C10B—C10A123.0 (4)C8—C7—C6—C5B0.1 (7)
C4—C3A—C3—S131.6 (4)C6—C7—C8—C90.2 (7)
C4—C3A—C3—S2152.4 (3)C9A—C9—C8—C70.0 (7)
C4—C3A—C3—C288.3 (4)N10—C9A—C5B—C5A0.5 (4)
C10B—C3A—C3—S1154.1 (3)N10—C9A—C5B—C6179.0 (4)
C10B—C3A—C3—S285.1 (3)C9—C9A—C5B—C5A178.1 (4)
C10B—C3A—C3—C234.2 (4)C9—C9A—C5B—C60.4 (6)
C3—C3A—C4—C5171.0 (3)N10—C9A—C9—C8178.5 (4)
C10B—C3A—C4—C555.6 (4)C5B—C9A—C9—C80.3 (6)
C4—C3A—C10B—O199.6 (4)N10—C10A—C10B—O155.3 (5)
C3—C3A—C10B—O122.4 (4)N10—C10A—C10B—C3A175.1 (4)
C4—C3A—C10B—C10A22.4 (5)C5A—C10A—C10B—O1128.7 (4)
C3—C3A—C10B—C10A144.4 (3)C5A—C10A—C10B—C3A9.0 (6)
S1—C3—C2—O1160.3 (3)C9A—N10—C10A—C5A0.4 (5)
S2—C3—C2—O180.6 (4)C9A—N10—C10A—C10B176.9 (4)
C3A—C3—C2—O135.7 (4)C10A—N10—C9A—C5B0.5 (5)
C3A—C4—C5—C5A55.3 (4)C10A—N10—C9A—C9177.8 (4)
C5B—C5A—C5—C4149.7 (4)S2—C12—C11—S144.2 (4)
C10A—C5A—C5—C425.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···S2i0.81 (4)2.71 (4)3.487 (4)161 (4)
C3A—H3A···Cg2ii0.982.853.725 (4)149
C4—H4B···Cg1iii0.972.793.556 (5)136
C5—H5A···Cg1ii0.972.963.714 (5)135
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H17NOS2
Mr303.43
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)294
a, b, c (Å)21.7617 (5), 8.4992 (2), 15.2115 (3)
V3)2813.47 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.913, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
8196, 2289, 1105
Rint0.149
(sin θ/λ)max1)0.579
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 0.98
No. of reflections2289
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected torsion angles (º) top
C10B—O1—C2—C322.4 (4)C3A—C3—C2—O135.7 (4)
C2—O1—C10B—C3A0.5 (4)C3A—C4—C5—C5A55.3 (4)
C10B—C3A—C3—C234.2 (4)C10A—C5A—C5—C425.4 (5)
C10B—C3A—C4—C555.6 (4)C5—C5A—C10A—C10B7.2 (6)
C3—C3A—C10B—O122.4 (4)C5A—C10A—C10B—C3A9.0 (6)
C4—C3A—C10B—C10A22.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···S2i0.81 (4)2.71 (4)3.487 (4)161 (4)
C3A—H3A···Cg2ii0.982.853.725 (4)149
C4—H4B···Cg1iii0.972.793.556 (5)136
C5—H5A···Cg1ii0.972.963.714 (5)135
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z; (iii) x, y, z+1/2.
 

Acknowledgements

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

First citationAbraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Fransworth, ch. 7 and 8. New York: Marcel Decker.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationÇaylak, N., Hökelek, T., Uludağ, N. & Patır, S. (2007). Acta Cryst. E63, o3913–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297–1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patir, S. (1999). Acta Cryst. C55, 675–677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patır, S. (2002). Acta Cryst. E58, o374–o376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Patir, S. & Uludauğ, N. (1999). Acta Cryst. C55, 114–116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPatır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem. 34, 1239–1242.  CAS Google Scholar
First citationPhillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.  Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o595-o596
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds