organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Choline di­hydrogen phosphate

aDepartment of Biotechnology, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan, bSchool of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia, and cInstrumentaion Analysis Center, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: ohnoh@cc.tuat.ac.jp

(Received 24 February 2009; accepted 27 February 2009; online 6 March 2009)

In the cystal structure of the title compound, (2-hy­droxy­ethyl)trimethylammonium dihydrogen phosphate, C5H14NO+·H2PO4, two anions create dimeric structures via two O—H⋯O hydrogen bonds. The hydrogen-bonded dimers are connected by another O—H⋯O hydrogen bond with the hydroxyl groups of the cations, constructing a columner structure along the a axis. A number of C—H⋯O interactions are also present.

Related literature

For background to ionic liquids, see: Byrne et al. (2007[Byrne, N., Wang, L.-M., Belieres, J.-P. & Angell, C. A. (2007). Chem. Commun. pp. 2714-2716.]); Fujita et al. (2005[Fujita, K., MacFarlane, D. R. & Forsyth, M. (2005). Chem. Commun. pp. 4804-4806.]); Ohno (2005[Ohno, H. (2005). Electrochemical Aspects of Ionic Liquids. New York: Wiley-Interscience.]); van Rantwijk et al. (2003[Rantwijk, F. van, Madeira, L. R. & Sheldon, R. A. (2003). Trends Biotechnol. 21, 131-138.]); Seddon (1997[Seddon, K. R. (1997). J. Chem. Technol. Biotechnol. 68, 351-356.]); Wasserscheid & Welton (2002[Wasserscheid, P. & Welton, T. (2002). Ionic liquids in synthesis. Weinheim: Wiley-VCH, Verlag.]); Welton (1999[Welton, T. (1999). Chem. Rev. 99, 2071-2084.]); Zhao et al. (2008[Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T. & Peters, D. (2008). Green Chem. 10, 696-705.]).

[Scheme 1]

Experimental

Crystal data
  • C5H14NO+·H2PO4

  • Mr = 201.16

  • Triclinic, [P \overline 1]

  • a = 6.9232 (3) Å

  • b = 8.2807 (4) Å

  • c = 9.2333 (3) Å

  • α = 84.458 (3)°

  • β = 71.414 (3)°

  • γ = 70.758 (3)°

  • V = 473.68 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.55 mm−1

  • T = 193 K

  • 0.60 × 0.10 × 0.02 mm

Data collection
  • Rigaku RAXIS-RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.429, Tmax = 0.950

  • 8717 measured reflections

  • 1714 independent reflections

  • 1344 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.12

  • 1714 reflections

  • 124 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O5i 0.80 (4) 1.79 (4) 2.586 (3) 178 (3)
O4—H4O⋯O2i 0.93 (4) 1.60 (4) 2.526 (2) 173 (3)
O5—H5O⋯O1ii 0.93 (4) 1.63 (4) 2.556 (3) 176 (4)
C3—H3B⋯O1 0.98 2.48 3.439 (3) 166
C4—H4B⋯O3iii 0.98 2.54 3.504 (3) 170
C4—H4C⋯O1iv 0.98 2.49 3.457 (3) 168
C5—H5A⋯O3iv 0.98 2.46 3.430 (3) 172
C5—H5B⋯O1iii 0.98 2.42 3.382 (3) 169
C5—H5C⋯O2 0.98 2.60 3.549 (3) 164
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson (1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some ionic liquids (ILs) possess negligible vapor pressure as well as fascinating features such as high thermal, chemical and electrochemical stability. ILs have gained increasing attention as green, multi-use reaction media as well as solvents for a electrochemistry and chemistry (Welton, 1999; Seddon, 1997; Wasserscheid & Welton, 2002). ILs are also currently being investigated for a variety of bio-applications including media for biocatalytic reactions (van Rantwijk et al., 2003; Zhao et al., 2008), biosensors (Ohno, 2005) and protein stabilization (Fujita et al., 2005; Byrne et al., 2007). We have been studying hydrated IL as solvents for proteins. We have already reported that some proteins are soluble, stable, and remain active in some hydrated ILs. For example, the title compounds, acts as an excellent preserver of proteins such as cytochrome c.

The title compound (I) consists of cations and anions. The molecular structures of (I) are shown in Fig. 1. Two hydrogen bonds of O4—H···O2 connect anions and construct dimer along the b axis (Fig. 2). The dimers are connected with each other by the two hydrogen bonds of O5—H···O1 and O3—H···O5, through the hydroxyl group (Table 1). These hydrogen bonds create a columnar structure of anions and cations along the a axis. The columnar structures interact with each other by C—H···O hydrogen bond and van der Waals forces (Table 1).

Related literature top

For background to ionic liquids, see: Byrne et al. (2007); Fujita et al. (2005); Ohno (2005); van Rantwijk et al. (2003); Seddon (1997); Wasserscheid & Welton (2002); Welton (1999); Zhao et al. (2008).

Experimental top

Choline bromide solution was treated on an ion exchange resin (Amberlite IRN77), then mixed with phosphoric acid solution. The solvent evaporated and the product was dried in vacuo. White powder was dissolved in methanol, then reprecipited by dropping in acetone. This reprecipitation was repeated four times. Final purification was achieved by drowning-out crystallization from methanol solution. Aceton was used as antisolvent. This drowning-out crystallization was repeated twice at room temperature for X-ray measurements. The compound was identified using 1H NMR, DSC and Electrospray mass spectrometry.

Refinement top

The H atoms of the OH groups were found in difference maps and refined freely. The other C-bound H atoms were subsequently refined as riding atoms, with C—H = 0.98 and 0.99Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot and atomic numbering scheme of (I). Ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitary radii.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along b axis. Dashed lines indicate intermolecular O—H···O hydrogen bonds. For clarity, only H atoms involved in O—H···O hydrogen bonding have been included. [Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 1, -y + 1, -z.]
(2-hydroxyethyl)trimethylammonium dihydrogen phosphate top
Crystal data top
C5H14NO+·H2PO4Z = 2
Mr = 201.16F(000) = 216
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Melting point: 392 K
a = 6.9232 (3) ÅCu Kα radiation, λ = 1.54187 Å
b = 8.2807 (4) ÅCell parameters from 6930 reflections
c = 9.2333 (3) Åθ = 5.1–68.3°
α = 84.458 (3)°µ = 2.55 mm1
β = 71.414 (3)°T = 193 K
γ = 70.758 (3)°Platelet, colourless
V = 473.68 (4) Å30.60 × 0.10 × 0.02 mm
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1714 independent reflections
Radiation source: rotating anode1344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 10.00 pixels mm-1θmax = 68.3°, θmin = 5.1°
ω scansh = 88
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 99
Tmin = 0.429, Tmax = 0.950l = 1111
8717 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.050P]
where P = (Fo2 + 2Fc2)/3
1714 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C5H14NO+·H2PO4γ = 70.758 (3)°
Mr = 201.16V = 473.68 (4) Å3
Triclinic, P1Z = 2
a = 6.9232 (3) ÅCu Kα radiation
b = 8.2807 (4) ŵ = 2.55 mm1
c = 9.2333 (3) ÅT = 193 K
α = 84.458 (3)°0.60 × 0.10 × 0.02 mm
β = 71.414 (3)°
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1714 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
1344 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 0.950Rint = 0.053
8717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.21 e Å3
1714 reflectionsΔρmin = 0.38 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.81645 (9)0.68990 (7)0.17447 (6)0.0335 (2)
O10.5777 (2)0.7534 (2)0.24514 (18)0.0430 (5)
O20.9220 (3)0.50241 (19)0.19693 (17)0.0439 (5)
O30.9039 (3)0.8007 (2)0.25187 (19)0.0390 (4)
O40.8798 (3)0.7343 (2)0.00080 (18)0.0406 (4)
O50.7017 (3)0.2172 (2)0.10979 (19)0.0452 (5)
N10.4405 (3)0.2917 (2)0.3125 (2)0.0340 (5)
C10.5122 (4)0.3227 (3)0.1424 (2)0.0342 (5)
H1A0.59780.40200.12270.041*
H1B0.38320.38010.10960.041*
C20.6444 (4)0.1635 (3)0.0453 (2)0.0391 (6)
H2A0.77500.10350.07550.047*
H2B0.55960.08440.05840.047*
C30.3093 (4)0.4616 (3)0.3894 (3)0.0417 (6)
H3A0.18210.51040.35470.050*
H3B0.39580.53910.36330.050*
H3C0.26400.44640.50030.050*
C40.3029 (4)0.1774 (3)0.3487 (3)0.0458 (7)
H4A0.18360.22570.30570.055*
H4B0.24580.16810.45970.055*
H4C0.38930.06360.30420.055*
C50.6299 (4)0.2169 (3)0.3699 (3)0.0435 (6)
H5A0.71170.10240.32550.052*
H5B0.58050.20890.48150.052*
H5C0.72190.29020.34030.052*
H3O1.025 (5)0.793 (4)0.209 (3)0.058 (9)*
H4O0.959 (6)0.643 (5)0.067 (4)0.096 (12)*
H5O0.597 (5)0.232 (4)0.158 (4)0.090 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0331 (4)0.0388 (4)0.0280 (4)0.0104 (3)0.0088 (3)0.0016 (2)
O10.0311 (9)0.0607 (12)0.0372 (9)0.0139 (8)0.0102 (7)0.0032 (8)
O20.0622 (11)0.0359 (10)0.0292 (9)0.0108 (8)0.0130 (8)0.0003 (7)
O30.0323 (9)0.0490 (10)0.0363 (9)0.0148 (8)0.0066 (7)0.0093 (7)
O40.0474 (10)0.0392 (10)0.0298 (9)0.0082 (8)0.0099 (7)0.0009 (7)
O50.0372 (9)0.0728 (13)0.0290 (9)0.0221 (9)0.0102 (7)0.0022 (8)
N10.0408 (11)0.0326 (10)0.0299 (10)0.0123 (8)0.0125 (8)0.0028 (8)
C10.0372 (12)0.0396 (13)0.0284 (12)0.0143 (10)0.0124 (10)0.0042 (9)
C20.0421 (13)0.0476 (14)0.0282 (12)0.0154 (11)0.0103 (10)0.0001 (10)
C30.0476 (14)0.0366 (13)0.0340 (12)0.0063 (11)0.0097 (11)0.0028 (10)
C40.0574 (16)0.0469 (15)0.0356 (13)0.0284 (13)0.0064 (11)0.0038 (11)
C50.0506 (15)0.0435 (14)0.0352 (13)0.0045 (12)0.0223 (11)0.0006 (11)
Geometric parameters (Å, º) top
P1—O11.4969 (16)C1—H1A0.9900
P1—O21.5080 (16)C1—H1B0.9900
P1—O41.5629 (16)C2—H2A0.9900
P1—O31.5771 (17)C2—H2B0.9900
O3—H3O0.79 (3)C3—H3A0.9800
O4—H4O0.93 (4)C3—H3B0.9800
O5—C21.427 (3)C3—H3C0.9800
O5—H5O0.93 (4)C4—H4A0.9800
N1—C51.493 (3)C4—H4B0.9800
N1—C41.499 (3)C4—H4C0.9800
N1—C31.499 (3)C5—H5A0.9800
N1—C11.513 (3)C5—H5B0.9800
C1—C21.513 (3)C5—H5C0.9800
O1—P1—O2115.19 (10)C1—C2—H2A110.3
O1—P1—O4110.63 (9)O5—C2—H2B110.3
O2—P1—O4110.24 (9)C1—C2—H2B110.3
O1—P1—O3104.81 (9)H2A—C2—H2B108.6
O2—P1—O3109.78 (10)N1—C3—H3A109.5
O4—P1—O3105.63 (10)N1—C3—H3B109.5
P1—O3—H3O113 (2)H3A—C3—H3B109.5
P1—O4—H4O117 (2)N1—C3—H3C109.5
C2—O5—H5O114 (2)H3A—C3—H3C109.5
C5—N1—C4110.68 (19)H3B—C3—H3C109.5
C5—N1—C3108.80 (19)N1—C4—H4A109.5
C4—N1—C3108.66 (19)N1—C4—H4B109.5
C5—N1—C1110.65 (17)H4A—C4—H4B109.5
C4—N1—C1110.51 (18)N1—C4—H4C109.5
C3—N1—C1107.44 (16)H4A—C4—H4C109.5
N1—C1—C2114.88 (18)H4B—C4—H4C109.5
N1—C1—H1A108.5N1—C5—H5A109.5
C2—C1—H1A108.5N1—C5—H5B109.5
N1—C1—H1B108.5H5A—C5—H5B109.5
C2—C1—H1B108.5N1—C5—H5C109.5
H1A—C1—H1B107.5H5A—C5—H5C109.5
O5—C2—C1107.09 (19)H5B—C5—H5C109.5
O5—C2—H2A110.3
C5—N1—C1—C262.5 (3)C3—N1—C1—C2178.9 (2)
C4—N1—C1—C260.5 (3)N1—C1—C2—O5178.51 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O5i0.80 (4)1.79 (4)2.586 (3)178 (3)
O4—H4O···O2i0.93 (4)1.60 (4)2.526 (2)173 (3)
O5—H5O···O1ii0.93 (4)1.63 (4)2.556 (3)176 (4)
C3—H3B···O10.982.483.439 (3)166
C4—H4B···O3iii0.982.543.504 (3)170
C4—H4C···O1iv0.982.493.457 (3)168
C5—H5A···O3iv0.982.463.430 (3)172
C5—H5B···O1iii0.982.423.382 (3)169
C5—H5C···O20.982.603.549 (3)164
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC5H14NO+·H2PO4
Mr201.16
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)6.9232 (3), 8.2807 (4), 9.2333 (3)
α, β, γ (°)84.458 (3), 71.414 (3), 70.758 (3)
V3)473.68 (4)
Z2
Radiation typeCu Kα
µ (mm1)2.55
Crystal size (mm)0.60 × 0.10 × 0.02
Data collection
DiffractometerRigaku RAXIS-RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.429, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
8717, 1714, 1344
Rint0.053
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.12
No. of reflections1714
No. of parameters124
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.38

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O5i0.80 (4)1.79 (4)2.586 (3)178 (3)
O4—H4O···O2i0.93 (4)1.60 (4)2.526 (2)173 (3)
O5—H5O···O1ii0.93 (4)1.63 (4)2.556 (3)176 (4)
C3—H3B···O10.982.483.439 (3)166
C4—H4B···O3iii0.982.543.504 (3)170
C4—H4C···O1iv0.982.493.457 (3)168
C5—H5A···O3iv0.982.463.430 (3)172
C5—H5B···O1iii0.982.423.382 (3)169
C5—H5C···O20.982.603.549 (3)164
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y1, z.
 

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. KF thanks the Japan Society for the Promotion of Science (Research Fellowship for Young Scientists) for support.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationByrne, N., Wang, L.-M., Belieres, J.-P. & Angell, C. A. (2007). Chem. Commun. pp. 2714–2716.  Web of Science CrossRef Google Scholar
First citationFujita, K., MacFarlane, D. R. & Forsyth, M. (2005). Chem. Commun. pp. 4804-4806.  Web of Science CrossRef Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOhno, H. (2005). Electrochemical Aspects of Ionic Liquids. New York: Wiley-Interscience.  Google Scholar
First citationRantwijk, F. van, Madeira, L. R. & Sheldon, R. A. (2003). Trends Biotechnol. 21, 131–138.  Web of Science PubMed Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSeddon, K. R. (1997). J. Chem. Technol. Biotechnol. 68, 351–356.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWasserscheid, P. & Welton, T. (2002). Ionic liquids in synthesis. Weinheim: Wiley-VCH, Verlag.  Google Scholar
First citationWelton, T. (1999). Chem. Rev. 99, 2071–2084.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T. & Peters, D. (2008). Green Chem. 10, 696–705.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds