organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-p-Tolyl-4,5-di­hydro-1H-imidazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 3 March 2009; accepted 5 March 2009; online 11 March 2009)

In the mol­ecule of the title compound, C10H12N2, the six- and five-membered rings are almost co-planar, forming a dihedral angle of 3.56 (8)°. In the crystal structure, neighbouring mol­ecules are linked together by inter­molecular N—H⋯N hydrogen bonds into one-dimensional infinite chains along the c axis. The crystal structure, is further stabilized by weak inter­molecular C—H⋯π and ππ stacking [centroid–centroid distance = 3.8892 (9) Å] inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures and syntheses, see, Stibrany et al. (2004[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527-o529.]); Kia et al., 2008[Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.], 2009[Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o338-o339.]). For applications of imidazoline derivatives, see, for example: Blancafort (1978[Blancafort, P. (1978). Drugs Future, 3, 592-592.]); Chan (1993[Chan, S. (1993). Clin. Sci. 85, 671-677.]); Vizi (1986[Vizi, E. S. (1986). Med. Res. Rev. 6, 431-449.]); Li et al. (1996[Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153-11162.]); Ueno et al., (1995[Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597-603.]); Corey & Grogan (1999[Corey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157-160.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2

  • Mr = 160.22

  • Monoclinic, C c

  • a = 5.1134 (1) Å

  • b = 16.4020 (4) Å

  • c = 10.1712 (2) Å

  • β = 94.293 (1)°

  • V = 850.66 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.47 × 0.12 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.883, Tmax = 0.993

  • 8503 measured reflections

  • 1423 independent reflections

  • 1338 reflections with I > 2˘I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.08

  • 1423 reflections

  • 114 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.87 (3) 2.06 (3) 2.9224 (18) 170 (2)
C10—H10BCg1ii 0.96 2.88 3.8110 (16) 163
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) x+1, y, z. Cg1 is the cetroid of the N1/C2/C1/N2/C3 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities such as antihypertensive (Blancafort 1978), antihyperglycemic (Chan 1993), antidepressive (Vizi 1986), antihypercholesterolemic (Li et al., 1996) and antiinflammatory (Ueno et al., 1995). These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan 1999). With regards to the important applications of imidazolines, herein we report the crystal structure of the title compound, (I).

In the title compound (I, Fig. 1), bond lengths (Allen et al. 1987) and angles are within the normal ranges and are comparable with the related structures (Stibrany et al. 2004; Kia et al., 2008, 2009). The molecule is almost planar with a maximum deviation from the mean plane of the molecule for C2 atom being -0.176 (19) Å. The six- and five-membered rings are twisted from each other, forming the dihedral angle of 3.56 (8)°. The interesting feature of the crystal structure is the short C2···C10i contact [3.368 (2) Å; (i) 1 + x, y, z], which is shorter than the sum of the van der Waals radius of carbon atom. In the crystal structure, neighbouring molecules are linked together by intermolecular N—H···N hydrogen bonds into 1-D infinite chains along the c axis (Table 1, Fig. 2). The crystal structure is further stabilized by weak intermolecular π-π stacking [Cg1···Cg2iii = 3.8892 Å; (iii) -1 + x, y, z] and C—H···π interactions (Cg1 and Cg2 are the centroids of the N1/C2/C1/N2/C3-imidazoline and the benzene rings, respectiverly).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures and syntheses, see, Stibrany et al. (2004); Kia et al., 2008, 2009). For applications of imidazoline derivatives, see, for example: Blancafort (1978); Chan (1993); Vizi (1986); Li et al. (1996); Ueno et al., (1995); Corey & Grogan (1999). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the cetroid of the N1/C2/C1/N2/C3 ring.

Experimental top

The synthetic method was based on the previous work (Stibrany et al. 2004), except that 10 mmol of 4-methyl cyanobenzene and 40 mmol of ethylenediamine was used. Single crystals suitable for X-ray diffraction were obtained by evaporation of an methanol solution at room temperature.

Refinement top

The N-bound hydrogen was located from the difference Fourier map are refined freely (see Table. 1). The rest of the hydrogen atoms were positioned geometrically with a riding approximation model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 & 1.5 Ueq(C). A rotating group model was applied for the methyl group. The 1120 Friedel pairs were merged before final refinement as there is not sufficient anomalous dispersion to determine the absolute structure.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b-axis showing a 1-D infinite chain along the c-axis by intermolecular N—H···N interactions. The intermolecular interactions are shown as dashed lines.
2-p-Tolyl-4,5-dihydro-1H-imidazole top
Crystal data top
C10H12N2F(000) = 344
Mr = 160.22Dx = 1.251 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3821 reflections
a = 5.1134 (1) Åθ = 2.5–31.5°
b = 16.4020 (4) ŵ = 0.08 mm1
c = 10.1712 (2) ÅT = 100 K
β = 94.293 (1)°Needle, colourless
V = 850.66 (3) Å30.47 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1423 independent reflections
Radiation source: fine-focus sealed tube1338 reflections with I > 2˘I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 31.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.883, Tmax = 0.993k = 2424
8503 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.0868P]
where P = (Fo2 + 2Fc2)/3
1423 reflections(Δ/σ)max < 0.001
114 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H12N2V = 850.66 (3) Å3
Mr = 160.22Z = 4
Monoclinic, CcMo Kα radiation
a = 5.1134 (1) ŵ = 0.08 mm1
b = 16.4020 (4) ÅT = 100 K
c = 10.1712 (2) Å0.47 × 0.12 × 0.09 mm
β = 94.293 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1423 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1338 reflections with I > 2˘I)
Tmin = 0.883, Tmax = 0.993Rint = 0.031
8503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.33 e Å3
1423 reflectionsΔρmin = 0.21 e Å3
114 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.2547 (3)0.01211 (8)1.08200 (13)0.0175 (3)
N10.2444 (3)0.02899 (8)0.86191 (12)0.0189 (3)
C10.4382 (3)0.07930 (9)1.04580 (15)0.0190 (3)
H1A0.60910.06841.07740.023*
H1B0.37280.13031.08370.023*
C20.4570 (3)0.08371 (9)0.89368 (15)0.0181 (3)
H2A0.42790.13880.86310.022*
H2B0.62560.06440.85610.022*
C30.1632 (3)0.01280 (8)0.97337 (13)0.0142 (3)
C40.0262 (3)0.08065 (8)0.96924 (15)0.0141 (2)
C50.1072 (3)0.12199 (9)1.08498 (14)0.0189 (3)
H5A0.04040.10691.16400.023*
C60.2870 (3)0.18556 (9)1.08343 (15)0.0201 (3)
H6A0.33930.21251.16150.024*
C70.3900 (3)0.20952 (8)0.96598 (14)0.0171 (3)
C80.3049 (3)0.16917 (9)0.85050 (15)0.0216 (3)
H8A0.36900.18510.77120.026*
C90.1253 (3)0.10529 (9)0.85124 (15)0.0202 (3)
H9A0.07120.07900.77290.024*
C100.5915 (3)0.27668 (9)0.96448 (17)0.0229 (3)
H10A0.54670.31270.89180.034*
H10B0.76130.25340.95500.034*
H10C0.59460.30671.04560.034*
H1N10.233 (5)0.0121 (14)0.781 (3)0.031 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0216 (6)0.0188 (5)0.0123 (5)0.0046 (5)0.0029 (5)0.0002 (4)
N10.0257 (7)0.0208 (6)0.0103 (5)0.0085 (5)0.0011 (5)0.0010 (4)
C10.0227 (7)0.0211 (6)0.0134 (6)0.0059 (5)0.0035 (5)0.0005 (5)
C20.0201 (7)0.0197 (6)0.0145 (6)0.0052 (5)0.0007 (5)0.0002 (5)
C30.0157 (6)0.0148 (6)0.0123 (6)0.0002 (5)0.0014 (5)0.0002 (4)
C40.0156 (6)0.0147 (5)0.0118 (5)0.0008 (4)0.0004 (4)0.0003 (4)
C50.0251 (8)0.0204 (6)0.0111 (6)0.0053 (6)0.0009 (5)0.0015 (5)
C60.0252 (8)0.0224 (6)0.0122 (6)0.0067 (6)0.0025 (6)0.0001 (5)
C70.0169 (7)0.0173 (6)0.0171 (6)0.0031 (5)0.0011 (5)0.0012 (5)
C80.0260 (8)0.0233 (7)0.0164 (6)0.0081 (6)0.0076 (6)0.0009 (5)
C90.0257 (8)0.0219 (6)0.0134 (6)0.0074 (6)0.0048 (5)0.0024 (5)
C100.0211 (8)0.0226 (6)0.0249 (7)0.0078 (6)0.0008 (6)0.0013 (6)
Geometric parameters (Å, º) top
N2—C31.2976 (17)C5—C61.391 (2)
N2—C11.4763 (19)C5—H5A0.9300
N1—C31.3627 (17)C6—C71.3975 (19)
N1—C21.4641 (19)C6—H6A0.9300
N1—H1N10.87 (3)C7—C81.389 (2)
C1—C21.5447 (19)C7—C101.5092 (19)
C1—H1A0.9700C8—C91.394 (2)
C1—H1B0.9700C8—H8A0.9300
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700C10—H10A0.9600
C3—C41.4779 (18)C10—H10B0.9600
C4—C51.394 (2)C10—H10C0.9600
C4—C91.397 (2)
C3—N2—C1106.60 (12)C6—C5—C4120.66 (13)
C3—N1—C2108.04 (12)C6—C5—H5A119.7
C3—N1—H1N1125.8 (17)C4—C5—H5A119.7
C2—N1—H1N1120.4 (18)C5—C6—C7120.80 (13)
N2—C1—C2105.98 (12)C5—C6—H6A119.6
N2—C1—H1A110.5C7—C6—H6A119.6
C2—C1—H1A110.5C8—C7—C6118.33 (13)
N2—C1—H1B110.5C8—C7—C10120.66 (13)
C2—C1—H1B110.5C6—C7—C10121.01 (13)
H1A—C1—H1B108.7C7—C8—C9121.21 (13)
N1—C2—C1101.59 (11)C7—C8—H8A119.4
N1—C2—H2A111.5C9—C8—H8A119.4
C1—C2—H2A111.5C8—C9—C4120.25 (14)
N1—C2—H2B111.5C8—C9—H9A119.9
C1—C2—H2B111.5C4—C9—H9A119.9
H2A—C2—H2B109.3C7—C10—H10A109.5
N2—C3—N1116.31 (12)C7—C10—H10B109.5
N2—C3—C4122.68 (12)H10A—C10—H10B109.5
N1—C3—C4120.98 (12)C7—C10—H10C109.5
C5—C4—C9118.72 (12)H10A—C10—H10C109.5
C5—C4—C3119.75 (13)H10B—C10—H10C109.5
C9—C4—C3121.53 (13)
C3—N2—C1—C25.19 (16)C9—C4—C5—C61.2 (2)
C3—N1—C2—C111.95 (15)C3—C4—C5—C6179.46 (14)
N2—C1—C2—N110.31 (15)C4—C5—C6—C70.1 (2)
C1—N2—C3—N12.84 (18)C5—C6—C7—C81.1 (2)
C1—N2—C3—C4179.35 (13)C5—C6—C7—C10178.05 (14)
C2—N1—C3—N210.16 (18)C6—C7—C8—C91.2 (2)
C2—N1—C3—C4171.99 (13)C10—C7—C8—C9177.91 (14)
N2—C3—C4—C51.8 (2)C7—C8—C9—C40.2 (2)
N1—C3—C4—C5179.56 (14)C5—C4—C9—C81.0 (2)
N2—C3—C4—C9178.80 (15)C3—C4—C9—C8179.62 (14)
N1—C3—C4—C91.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.87 (3)2.06 (3)2.9224 (18)170 (2)
C10—H10B···Cg1ii0.962.883.8110 (16)163
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H12N2
Mr160.22
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)5.1134 (1), 16.4020 (4), 10.1712 (2)
β (°) 94.293 (1)
V3)850.66 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.883, 0.993
No. of measured, independent and
observed [I > 2˘I)] reflections
8503, 1423, 1338
Rint0.031
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.08
No. of reflections1423
No. of parameters114
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.87 (3)2.06 (3)2.9224 (18)170 (2)
C10—H10B···Cg1ii0.962.883.8110 (16)163
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z.
 

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlancafort, P. (1978). Drugs Future, 3, 592–592.  CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, S. (1993). Clin. Sci. 85, 671–677.  CAS PubMed Web of Science Google Scholar
First citationCorey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157–160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o338–o339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153–11162.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527–o529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUeno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597–603.  CrossRef CAS PubMed Web of Science Google Scholar
First citationVizi, E. S. (1986). Med. Res. Rev. 6, 431–449.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds