organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[4-(Tri­fluoro­meth­yl)phen­yl]propanoic acid

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guanjn@sina.com

(Received 16 March 2009; accepted 19 March 2009; online 25 March 2009)

In crystal of the the title compound, C10H9F3O2, inversion dimers linked by pairs of O—H⋯O hydrogen bonds occur.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related literature on acid derivatives, see: Battistuzzi et al. (2003[Battistuzzi, G., Cacchi, S., Fabrizi, G. & Bernini, R. (2003). Synlett, pp. 1133-1136.]); Feuerstein et al. (2001[Feuerstein, M., Laurenti, D., Bougeant, C., Doucet, H. & Santelli, M. (2001). Chem. Commun. pp. 325-326.], 2003[Feuerstein, M., Berthiol, F., Doucet, H. & Santelli, M. (2003). Org. Biomol. Chem. pp. 2235-2237.]); Johnson & Wen (1981[Johnson, P. Y. & Wen, J. Q. (1981). J. Org. Chem. 46, 2767-2771.]); Shoda & Kuriyama (2003[Shoda, K. & Kuriyama, H. (2003). PCT Int. Appl. WO, 2003 070 686.]); Yamanouchi & Yamane (1988[Yamanouchi, T. & Yamane, H. (1988). Jpn Patent JP 63 250 356.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9F3O2

  • Mr = 218.17

  • Triclinic, [P \overline 1]

  • a = 7.9028 (19) Å

  • b = 8.288 (2) Å

  • c = 9.238 (3) Å

  • α = 63.381 (15)°

  • β = 85.20 (3)°

  • γ = 65.70 (2)°

  • V = 489.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.986

  • 1894 measured reflections

  • 1754 independent reflections

  • 874 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.178

  • S = 1.00

  • 1754 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 1.87 2.687 (4) 174
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of acids is important chemical material (Battistuzzi et al., 2003; Feuerstein et al., 2003, 2001; Johnson & Wen, 1981; Yamanouchi & Yamane 1988; Shoda & Kuriyama, 2003). We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987).

In the crystal of the title compound, there is an intermolecular O—H···O hydrogen bond which may be effective to the stabilization of the crystal.

Related literature top

For bond-length data, see: Allen et al. (1987). For related literature on acid derivatives, see: Battistuzzi et al. (2003); Feuerstein et al. (2001, 2003); Johnson & Wen (1981); Shoda & Kuriyama (2003); Yamanouchi & Yamane (1988).

Experimental top

2,2-Dimethyl-5-(4-trifluoromethyl-benzyl)-[1,3]dioxane-4,6-dione (1 mmol), acetonitrile (25 ml) and water (0.25 ml) were mixed and subjected to microwave irradiation at 120° for 30 min (150 psi, 300 W, run time 5 min, hold time 30 min). Crude compound (I) was obtained. An X-ray grade crystal of (I) (500 mg) was grown from ethyl ether (10 ml) at room temperature.

Refinement top

H atoms were placed geometrically at the distances of C—H = 0.93–0.97 Å and O—H = 0.82 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding interactions of (I).
3-[4-(Trifluoromethyl)phenyl]propanoic acid top
Crystal data top
C10H9F3O2Z = 2
Mr = 218.17F(000) = 224
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Melting point: 379 K
a = 7.9028 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.288 (2) ÅCell parameters from 25 reflections
c = 9.238 (3) Åθ = 9–12°
α = 63.381 (15)°µ = 0.14 mm1
β = 85.20 (3)°T = 298 K
γ = 65.70 (2)°Yellow, colourless
V = 489.2 (2) Å30.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
874 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.3°, θmin = 2.5°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.973, Tmax = 0.986l = 1111
1894 measured reflections3 standard reflections every 200 reflections
1754 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.06P)2 + 0.216P]
where P = (Fo2 + 2Fc2)/3
1754 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H9F3O2γ = 65.70 (2)°
Mr = 218.17V = 489.2 (2) Å3
Triclinic, P1Z = 2
a = 7.9028 (19) ÅMo Kα radiation
b = 8.288 (2) ŵ = 0.14 mm1
c = 9.238 (3) ÅT = 298 K
α = 63.381 (15)°0.20 × 0.10 × 0.10 mm
β = 85.20 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
874 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.973, Tmax = 0.9863 standard reflections every 200 reflections
1894 measured reflections intensity decay: 1%
1754 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
1754 reflectionsΔρmin = 0.17 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7456 (3)0.0616 (4)1.0251 (3)0.0961 (9)
H1A0.65540.07651.06990.144*
O20.5346 (4)0.1263 (4)0.8086 (3)0.0888 (9)
F11.5281 (8)0.2427 (10)0.2421 (7)0.1096 (8)0.429 (2)
F21.3838 (9)0.5350 (11)0.1735 (8)0.1096 (8)0.429 (2)
F31.3223 (9)0.3992 (11)0.0426 (8)0.1096 (8)0.429 (2)
F1'1.4156 (7)0.2852 (8)0.1174 (6)0.1096 (8)0.571 (2)
F2'1.4908 (7)0.3848 (8)0.2634 (6)0.1096 (8)0.571 (2)
F3'1.2747 (6)0.5871 (7)0.0624 (6)0.1096 (8)0.571 (2)
C11.3412 (7)0.3971 (8)0.1896 (6)0.1096 (8)
C21.2089 (5)0.3532 (5)0.2963 (4)0.0649 (9)
C31.0233 (5)0.4424 (6)0.2356 (5)0.0865 (12)
H3A0.98610.53490.12620.104*
C40.8919 (5)0.3987 (6)0.3320 (5)0.0906 (13)
H4A0.76820.45910.28570.109*
C50.9377 (5)0.2676 (5)0.4958 (4)0.0628 (9)
C61.1224 (5)0.1850 (7)0.5566 (5)0.0921 (13)
H6A1.15920.09680.66700.111*
C71.2561 (5)0.2288 (6)0.4585 (4)0.0827 (12)
H7A1.37940.17230.50460.099*
C80.7910 (5)0.2231 (6)0.5981 (4)0.0780 (11)
H8A0.73350.17140.55080.094*
H8B0.69480.34790.58910.094*
C90.8489 (5)0.0810 (5)0.7754 (4)0.0756 (11)
H9A0.93930.04700.78590.091*
H9B0.91130.12830.82310.091*
C100.6946 (6)0.0527 (6)0.8697 (5)0.0716 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0801 (18)0.104 (2)0.0801 (18)0.0392 (16)0.0072 (14)0.0214 (16)
O20.0765 (18)0.100 (2)0.0808 (17)0.0409 (16)0.0095 (14)0.0300 (15)
F10.1028 (18)0.119 (2)0.1119 (18)0.0560 (17)0.0344 (13)0.0514 (15)
F20.1028 (18)0.119 (2)0.1119 (18)0.0560 (17)0.0344 (13)0.0514 (15)
F30.1028 (18)0.119 (2)0.1119 (18)0.0560 (17)0.0344 (13)0.0514 (15)
F1'0.1028 (18)0.119 (2)0.1119 (18)0.0560 (17)0.0344 (13)0.0514 (15)
F2'0.1028 (18)0.119 (2)0.1119 (18)0.0560 (17)0.0344 (13)0.0514 (15)
F3'0.1028 (18)0.119 (2)0.1119 (18)0.0560 (17)0.0344 (13)0.0514 (15)
C10.1028 (18)0.119 (2)0.1119 (18)0.0560 (17)0.0344 (13)0.0514 (15)
C20.075 (2)0.060 (2)0.073 (2)0.032 (2)0.0156 (18)0.0384 (19)
C30.074 (3)0.085 (3)0.074 (2)0.025 (2)0.004 (2)0.021 (2)
C40.064 (2)0.095 (3)0.088 (3)0.025 (2)0.007 (2)0.029 (2)
C50.067 (2)0.064 (2)0.067 (2)0.0261 (18)0.0045 (17)0.0388 (18)
C60.080 (3)0.108 (3)0.071 (2)0.042 (3)0.003 (2)0.023 (2)
C70.073 (2)0.108 (3)0.073 (2)0.045 (2)0.0032 (19)0.039 (2)
C80.069 (2)0.102 (3)0.070 (2)0.039 (2)0.0010 (18)0.042 (2)
C90.079 (2)0.067 (2)0.082 (2)0.030 (2)0.016 (2)0.037 (2)
C100.081 (3)0.069 (3)0.082 (3)0.040 (2)0.016 (2)0.042 (2)
Geometric parameters (Å, º) top
O1—C101.298 (4)C4—C51.377 (5)
O1—H1A0.8200C4—H4A0.9300
O2—C101.211 (4)C5—C61.373 (5)
F1—C11.436 (8)C5—C81.493 (5)
F2—C11.264 (8)C6—C71.389 (5)
F3—C11.371 (8)C6—H6A0.9300
F1'—C11.300 (6)C7—H7A0.9300
F2'—C11.359 (6)C8—C91.494 (5)
F3'—C11.379 (6)C8—H8A0.9700
C1—C21.420 (5)C8—H8B0.9700
C2—C71.357 (4)C9—C101.475 (5)
C2—C31.373 (5)C9—H9A0.9700
C3—C41.367 (5)C9—H9B0.9700
C3—H3A0.9300
C10—O1—H1A109.5C3—C4—C5121.8 (4)
F2—C1—F1'124.1 (5)C3—C4—H4A119.1
F2—C1—F2'50.9 (4)C5—C4—H4A119.1
F1'—C1—F2'104.0 (5)C6—C5—C4116.1 (4)
F2—C1—F3111.3 (5)C6—C5—C8123.3 (3)
F1'—C1—F340.0 (3)C4—C5—C8120.6 (3)
F2'—C1—F3128.7 (5)C5—C6—C7122.1 (4)
F2—C1—F3'53.5 (4)C5—C6—H6A119.0
F1'—C1—F3'103.4 (5)C7—C6—H6A119.0
F2'—C1—F3'102.5 (5)C2—C7—C6120.7 (4)
F3—C1—F3'68.0 (4)C2—C7—H7A119.6
F2—C1—C2119.6 (5)C6—C7—H7A119.6
F1'—C1—C2116.3 (5)C5—C8—C9118.1 (3)
F2'—C1—C2113.8 (4)C5—C8—H8A107.8
F3—C1—C2115.5 (5)C9—C8—H8A107.8
F3'—C1—C2115.2 (4)C5—C8—H8B107.8
F2—C1—F196.1 (5)C9—C8—H8B107.8
F1'—C1—F158.3 (4)H8A—C8—H8B107.1
F2'—C1—F150.5 (3)C10—C9—C8114.8 (3)
F3—C1—F195.9 (5)C10—C9—H9A108.6
F3'—C1—F1130.2 (4)C8—C9—H9A108.6
C2—C1—F1114.2 (4)C10—C9—H9B108.6
C7—C2—C3117.5 (3)C8—C9—H9B108.6
C7—C2—C1123.0 (4)H9A—C9—H9B107.5
C3—C2—C1119.5 (4)O2—C10—O1122.4 (3)
C4—C3—C2121.6 (4)O2—C10—C9123.5 (4)
C4—C3—H3A119.2O1—C10—C9114.0 (4)
C2—C3—H3A119.2
F2—C1—C2—C785.8 (7)C2—C3—C4—C52.0 (7)
F1'—C1—C2—C792.3 (6)C3—C4—C5—C60.5 (6)
F2'—C1—C2—C728.5 (7)C3—C4—C5—C8179.9 (4)
F3—C1—C2—C7137.0 (5)C4—C5—C6—C70.7 (6)
F3'—C1—C2—C7146.5 (5)C8—C5—C6—C7179.9 (4)
F1—C1—C2—C727.1 (7)C3—C2—C7—C63.8 (6)
F2—C1—C2—C392.8 (7)C1—C2—C7—C6177.6 (4)
F1'—C1—C2—C389.2 (6)C5—C6—C7—C21.5 (7)
F2'—C1—C2—C3150.0 (5)C6—C5—C8—C90.1 (5)
F3—C1—C2—C344.4 (7)C4—C5—C8—C9179.5 (4)
F3'—C1—C2—C332.0 (7)C5—C8—C9—C10177.0 (3)
F1—C1—C2—C3154.3 (5)C8—C9—C10—O25.0 (5)
C7—C2—C3—C44.1 (6)C8—C9—C10—O1176.0 (3)
C1—C2—C3—C4177.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.872.687 (4)174
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC10H9F3O2
Mr218.17
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9028 (19), 8.288 (2), 9.238 (3)
α, β, γ (°)63.381 (15), 85.20 (3), 65.70 (2)
V3)489.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
1894, 1754, 874
Rint0.017
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.178, 1.00
No. of reflections1754
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.872.687 (4)174
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBattistuzzi, G., Cacchi, S., Fabrizi, G. & Bernini, R. (2003). Synlett, pp. 1133–1136.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFeuerstein, M., Berthiol, F., Doucet, H. & Santelli, M. (2003). Org. Biomol. Chem. pp. 2235–2237.  Web of Science CrossRef Google Scholar
First citationFeuerstein, M., Laurenti, D., Bougeant, C., Doucet, H. & Santelli, M. (2001). Chem. Commun. pp. 325–326.  Web of Science CrossRef Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJohnson, P. Y. & Wen, J. Q. (1981). J. Org. Chem. 46, 2767–2771.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoda, K. & Kuriyama, H. (2003). PCT Int. Appl. WO, 2003 070 686.  Google Scholar
First citationYamanouchi, T. & Yamane, H. (1988). Jpn Patent JP 63 250 356.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds