metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­dinitrato(quioxalino[2,3-f][1,10]phenanthroline)nickel(II) monohydrate

aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: gyhxxiaoxin@163.com

(Received 24 March 2009; accepted 27 March 2009; online 31 March 2009)

In the crystal of the title compound, [Ni(NO3)2(C18H10N4)(H2O)]·H2O, the NiII ion is coordinated in a distorted octahedral geometry by two N atoms of the 1,10-phenanthroline moiety of the ligand, three O atoms from two nitrate anions and an O atom from one water mol­ecule. O—H⋯O hydrogen bonds between the coordinated and the solvent water molecules and between these water molecules and the nitrate O atoms help to establish the crystal packing.

Related literature

For transition metal complexes and their potential applications as functional materials and enzymes, see: Noro et al. (2000[Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081-2084.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]). For quinoxaline derivates and 1,10-phenanthroline as electron-transporting materials, see: Ambroise & Maiya (2000[Ambroise, A. & Maiya, B. G. (2000). Inorg. Chem. 39, 4264-4272.]); Lo & Hui (2005[Lo, K. K.-W. & Hui, W.-K. (2005). Inorg. Chem. 44, 1992-2002.]); Thomas et al. (2005[Thomas, K. R. J., Velusamy, M. T. L., Jiann Chuen, C. H. & Tao, Y. T. (2005). Inorg. Chem. 39, 4264-4272.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NO3)2(C18H10N4)(H2O)]·H2O

  • Mr = 501.04

  • Monoclinic, P 21 /c

  • a = 7.300 (3) Å

  • b = 27.872 (12) Å

  • c = 9.950 (4) Å

  • β = 109.005 (6)°

  • V = 1914.1 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.24 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.792, Tmax = 0.805

  • 12703 measured reflections

  • 3338 independent reflections

  • 2255 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 0.99

  • 3338 reflections

  • 314 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O6i 0.83 (2) 2.02 (2) 2.839 (5) 170 (6)
O1W—H1WB⋯O2Wii 0.83 (2) 1.81 (2) 2.630 (6) 169 (6)
O2W—H2WB⋯O3iii 0.83 (2) 2.11 (4) 2.873 (5) 153 (7)
O2W—H2WA⋯O4 0.83 (2) 1.98 (2) 2.798 (5) 167 (6)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). And quinoxaline derivates and 1,10-phenanthroline are known to function as electron-transporting materials (Ambroise & Maiya, 2000; Lo & Hui, 2005; Thomas, et al., 2005). We report here the crystal structure of the title nitrate(II) complex, (I), containing quinoxaline and 1,10-phenanthroline groups.

In the crystal of the title compound (Fig. 1), the NiII ion is coordinated by two N atoms of the 1,10-phenanthroline ligand, three O atoms from the two nitrate anions and an O atom from one water molecule. The O—H···O hydrogen bonds are observed between NO3- and the water molecule. The hydrogen bond distances of the O1W—H1WA···O6, O1W—H1WB···O2W, O2W—H2WB···O3 and O2W—H2WA···O4, are 2.839 (5), 2.630 (6), 2.873 (5) and 2.798 (5) Å, respectively (Table 1). In the crystal structure, O—H···O hydrogen bonds interactions may help to establish the packing.

Related literature top

For transition metal complexes and their potential

applications as functional materials and enzymes, see: Noro et al. (2000); Yaghi et al. (1998). For quinoxaline derivates and 1,10-phenanthroline as electron-transporting materials, see: Ambroise & Maiya (2000); Lo & Hui (2005); Thomas et al. (2005).

Experimental top

A solution of 1,10-phenanthroline-5,6-dione (2.1 g, 0.01 mol) in ethanol (30 ml) was added to a stirred solution of benzene-1,2-diamine (1.08 g, 0.01 mol) in ethanol (80 ml) at 293 K. The solution was stirred at room temperature for 12 h, then the 10 ml of NaOH solution (1 M) was added to, and the two phase mixture was well stirred for 8 min. The mixture was filtered. The residue was washed with 30 ml CH3CH2OCH2CH3. The solid product was dissolved in 90 ml ethanol, then a solution of Ni(N03)2, (2.55 g, 0.01 mol) in H2O (20 ml) was added and the resulting solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After two weeks, green laths and prisms of (I) were isolated.

Refinement top

Water H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Aquadinitrato(quioxalino[2,3-f][1,10]phenanthroline)nickel(II) monohydrate top
Crystal data top
[Ni(NO3)2(C18H10N4)(H2O)]·H2OF(000) = 1024
Mr = 501.04Dx = 1.739 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3338 reflections
a = 7.300 (3) Åθ = 1.5–25.0°
b = 27.872 (12) ŵ = 1.08 mm1
c = 9.950 (4) ÅT = 293 K
β = 109.005 (6)°Prism, green
V = 1914.1 (14) Å30.24 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3338 independent reflections
Radiation source: fine-focus sealed tube2255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.792, Tmax = 0.805k = 2933
12703 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0654P)2]
where P = (Fo2 + 2Fc2)/3
3338 reflections(Δ/σ)max < 0.001
314 parametersΔρmax = 1.02 e Å3
4 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(NO3)2(C18H10N4)(H2O)]·H2OV = 1914.1 (14) Å3
Mr = 501.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.300 (3) ŵ = 1.08 mm1
b = 27.872 (12) ÅT = 293 K
c = 9.950 (4) Å0.24 × 0.21 × 0.19 mm
β = 109.005 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3338 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2255 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.805Rint = 0.062
12703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 1.02 e Å3
3338 reflectionsΔρmin = 0.35 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.4569 (6)0.23839 (11)0.3617 (4)0.0500 (8)
O2W0.2513 (6)0.25558 (15)0.2685 (5)0.0748 (11)
H1WA0.355 (5)0.246 (2)0.298 (5)0.11 (2)*
H2WA0.140 (4)0.246 (2)0.313 (6)0.10 (2)*
H2WB0.229 (10)0.271 (2)0.205 (5)0.12 (3)*
H1WB0.559 (5)0.2429 (19)0.343 (6)0.08 (2)*
C10.2027 (6)0.07484 (15)0.0816 (4)0.0381 (10)
C20.1687 (7)0.12547 (15)0.0792 (5)0.0491 (12)
H20.16500.14120.16070.059*
C30.1418 (7)0.15036 (16)0.0432 (5)0.0509 (12)
H30.11950.18320.04410.061*
C40.1467 (6)0.12769 (16)0.1693 (5)0.0473 (11)
H40.12750.14550.25180.057*
C50.1798 (6)0.07968 (15)0.1691 (4)0.0437 (11)
H50.18290.06480.25210.052*
C60.2095 (6)0.05199 (15)0.0451 (4)0.0389 (10)
C70.2656 (6)0.02039 (14)0.0708 (4)0.0367 (10)
C80.3059 (6)0.07219 (14)0.0721 (4)0.0361 (10)
C90.3115 (6)0.09755 (15)0.0475 (4)0.0435 (11)
H90.28450.08200.13450.052*
C100.3567 (7)0.14525 (15)0.0365 (4)0.0448 (11)
H100.35970.16240.11590.054*
C110.3984 (6)0.16799 (15)0.0953 (4)0.0418 (11)
H110.43640.20000.10310.050*
C120.3390 (5)0.09756 (13)0.1985 (4)0.0331 (9)
C130.3222 (5)0.07486 (14)0.3249 (4)0.0325 (9)
C140.3228 (6)0.08498 (15)0.5558 (4)0.0434 (11)
H140.33960.10460.63450.052*
C150.2730 (7)0.03711 (15)0.5646 (4)0.0478 (12)
H150.25540.02540.64700.057*
C160.2501 (6)0.00718 (15)0.4488 (4)0.0435 (11)
H160.21780.02500.45240.052*
C170.2766 (6)0.02637 (14)0.3261 (4)0.0343 (10)
C180.2550 (6)0.00271 (14)0.1970 (4)0.0360 (10)
N10.2418 (5)0.00420 (12)0.0496 (3)0.0386 (8)
N20.2264 (5)0.04985 (12)0.2022 (3)0.0393 (8)
N30.3856 (5)0.14541 (11)0.2110 (3)0.0364 (8)
N40.3473 (5)0.10402 (12)0.4398 (3)0.0371 (8)
N50.8338 (6)0.13711 (13)0.5559 (4)0.0462 (9)
N60.1912 (5)0.21527 (13)0.5388 (4)0.0448 (9)
O10.7783 (5)0.10649 (12)0.4602 (3)0.0641 (10)
O20.9965 (4)0.13624 (12)0.6460 (4)0.0659 (10)
O30.7158 (4)0.17099 (11)0.5592 (3)0.0546 (9)
O40.0965 (5)0.20873 (11)0.4119 (3)0.0591 (9)
O50.3600 (4)0.19605 (10)0.5873 (3)0.0455 (8)
O60.1315 (5)0.23972 (12)0.6206 (4)0.0602 (9)
Ni10.42395 (7)0.170749 (17)0.40994 (5)0.0345 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.065 (3)0.0339 (19)0.049 (2)0.0001 (18)0.016 (2)0.0016 (15)
O2W0.057 (3)0.073 (3)0.090 (3)0.008 (2)0.018 (2)0.035 (2)
C10.041 (2)0.033 (2)0.043 (2)0.0042 (19)0.0175 (19)0.007 (2)
C20.064 (3)0.034 (3)0.054 (3)0.003 (2)0.026 (2)0.001 (2)
C30.062 (3)0.029 (2)0.067 (3)0.008 (2)0.029 (3)0.011 (2)
C40.055 (3)0.041 (3)0.048 (3)0.006 (2)0.020 (2)0.011 (2)
C50.052 (3)0.037 (3)0.042 (2)0.008 (2)0.015 (2)0.005 (2)
C60.038 (2)0.034 (3)0.044 (2)0.0006 (19)0.0121 (19)0.007 (2)
C70.041 (2)0.033 (2)0.035 (2)0.0029 (18)0.0112 (18)0.0014 (18)
C80.042 (2)0.031 (2)0.035 (2)0.0029 (19)0.0113 (18)0.0000 (18)
C90.058 (3)0.037 (3)0.033 (2)0.002 (2)0.012 (2)0.0036 (19)
C100.069 (3)0.029 (2)0.042 (2)0.001 (2)0.025 (2)0.005 (2)
C110.053 (3)0.029 (2)0.045 (3)0.001 (2)0.018 (2)0.002 (2)
C120.035 (2)0.026 (2)0.037 (2)0.0036 (18)0.0107 (18)0.0009 (18)
C130.034 (2)0.029 (2)0.034 (2)0.0008 (18)0.0113 (17)0.0007 (18)
C140.055 (3)0.039 (3)0.039 (2)0.003 (2)0.019 (2)0.005 (2)
C150.071 (3)0.035 (3)0.043 (2)0.000 (2)0.027 (2)0.002 (2)
C160.062 (3)0.030 (2)0.045 (3)0.003 (2)0.026 (2)0.003 (2)
C170.037 (2)0.033 (2)0.036 (2)0.0023 (18)0.0162 (18)0.0001 (18)
C180.040 (2)0.030 (2)0.038 (2)0.0006 (18)0.0131 (18)0.0015 (19)
N10.046 (2)0.034 (2)0.0349 (19)0.0001 (16)0.0117 (16)0.0026 (16)
N20.052 (2)0.029 (2)0.0410 (19)0.0008 (16)0.0214 (17)0.0016 (16)
N30.041 (2)0.0288 (19)0.041 (2)0.0005 (15)0.0146 (16)0.0008 (16)
N40.044 (2)0.032 (2)0.0355 (19)0.0018 (16)0.0143 (16)0.0030 (16)
N50.057 (3)0.039 (2)0.048 (2)0.001 (2)0.025 (2)0.0066 (19)
N60.048 (2)0.035 (2)0.052 (2)0.0032 (18)0.018 (2)0.0110 (18)
O10.084 (3)0.055 (2)0.056 (2)0.0090 (19)0.0272 (19)0.0098 (18)
O20.043 (2)0.080 (3)0.069 (2)0.0116 (18)0.0104 (18)0.0144 (19)
O30.0478 (19)0.0411 (19)0.068 (2)0.0069 (16)0.0097 (16)0.0122 (16)
O40.057 (2)0.064 (2)0.0475 (19)0.0018 (17)0.0046 (16)0.0121 (16)
O50.0441 (18)0.0402 (18)0.0500 (18)0.0038 (14)0.0123 (14)0.0040 (14)
O60.062 (2)0.055 (2)0.071 (2)0.0023 (17)0.0325 (18)0.0205 (18)
Ni10.0469 (4)0.0241 (3)0.0321 (3)0.0013 (2)0.0122 (2)0.0036 (2)
Geometric parameters (Å, º) top
O1W—Ni11.979 (3)C11—H110.9300
O1W—H1WA0.83 (2)C12—N31.372 (5)
O1W—H1WB0.83 (2)C12—C131.448 (5)
O2W—H2WA0.83 (2)C13—N41.366 (5)
O2W—H2WB0.83 (2)C13—C171.393 (5)
C1—N21.349 (5)C14—N41.334 (5)
C1—C61.427 (6)C14—C151.393 (6)
C1—C21.432 (6)C14—H140.9300
C2—C31.359 (6)C15—C161.388 (6)
C2—H20.9300C15—H150.9300
C3—C41.416 (6)C16—C171.402 (5)
C3—H30.9300C16—H160.9300
C4—C51.360 (6)C17—C181.484 (5)
C4—H40.9300C18—N21.334 (5)
C5—C61.411 (5)N3—Ni12.033 (3)
C5—H50.9300N4—Ni11.992 (3)
C6—N11.356 (5)N5—O21.233 (4)
C7—N11.341 (5)N5—O11.244 (4)
C7—C181.436 (5)N5—O31.286 (4)
C7—C81.472 (5)N6—O41.240 (4)
C8—C121.393 (5)N6—O41.240 (4)
C8—C91.396 (5)N6—O61.244 (4)
C9—C101.366 (6)N6—O51.285 (4)
C9—H90.9300O3—Ni12.164 (3)
C10—C111.399 (6)O4—O40.000 (6)
C10—H100.9300O5—Ni12.090 (3)
C11—N31.342 (5)
Ni1—O1W—H1WA106 (4)N4—C14—H14118.4
Ni1—O1W—H1WB113 (4)C15—C14—H14118.4
H1WA—O1W—H1WB116 (6)C16—C15—C14119.1 (4)
H2WA—O2W—H2WB100 (6)C16—C15—H15120.4
N2—C1—C6121.6 (4)C14—C15—H15120.4
N2—C1—C2119.7 (4)C15—C16—C17118.7 (4)
C6—C1—C2118.7 (4)C15—C16—H16120.7
C3—C2—C1119.5 (4)C17—C16—H16120.7
C3—C2—H2120.3C13—C17—C16118.6 (4)
C1—C2—H2120.3C13—C17—C18118.7 (3)
C2—C3—C4121.9 (4)C16—C17—C18122.6 (4)
C2—C3—H3119.1N2—C18—C7121.9 (4)
C4—C3—H3119.1N2—C18—C17118.6 (3)
C5—C4—C3119.6 (4)C7—C18—C17119.5 (4)
C5—C4—H4120.2C7—N1—C6116.5 (3)
C3—C4—H4120.2C18—N2—C1116.8 (3)
C4—C5—C6121.1 (4)C11—N3—C12117.5 (3)
C4—C5—H5119.5C11—N3—Ni1130.3 (3)
C6—C5—H5119.5C12—N3—Ni1112.2 (2)
N1—C6—C5119.2 (4)C14—N4—C13117.9 (3)
N1—C6—C1121.6 (4)C14—N4—Ni1128.6 (3)
C5—C6—C1119.3 (4)C13—N4—Ni1113.5 (3)
N1—C7—C18121.6 (4)O2—N5—O1122.7 (4)
N1—C7—C8118.5 (4)O2—N5—O3119.3 (4)
C18—C7—C8119.9 (3)O1—N5—O3118.0 (4)
C12—C8—C9117.9 (4)O4—N6—O40.0 (4)
C12—C8—C7118.8 (4)O4—N6—O6123.3 (4)
C9—C8—C7123.4 (4)O4—N6—O6123.3 (4)
C10—C9—C8119.9 (4)O4—N6—O5118.0 (4)
C10—C9—H9120.1O4—N6—O5118.0 (4)
C8—C9—H9120.1O6—N6—O5118.7 (4)
C9—C10—C11119.3 (4)N5—O3—Ni1119.9 (3)
C9—C10—H10120.4O4—O4—N60 (10)
C11—C10—H10120.4N6—O5—Ni1105.9 (2)
N3—C11—C10122.5 (4)O1W—Ni1—N4170.98 (15)
N3—C11—H11118.7O1W—Ni1—N394.82 (14)
C10—C11—H11118.7N4—Ni1—N382.22 (13)
N3—C12—C8122.7 (4)O1W—Ni1—O587.80 (13)
N3—C12—C13115.7 (3)N4—Ni1—O592.19 (12)
C8—C12—C13121.5 (4)N3—Ni1—O5160.31 (12)
N4—C13—C17122.5 (4)O1W—Ni1—O389.62 (14)
N4—C13—C12116.2 (3)N4—Ni1—O399.32 (12)
C17—C13—C12121.3 (3)N3—Ni1—O3117.52 (13)
N4—C14—C15123.1 (4)O5—Ni1—O381.96 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6i0.83 (2)2.02 (2)2.839 (5)170 (6)
O1W—H1WB···O2Wii0.83 (2)1.81 (2)2.630 (6)169 (6)
O2W—H2WB···O3iii0.83 (2)2.11 (4)2.873 (5)153 (7)
O2W—H2WA···O40.83 (2)1.98 (2)2.798 (5)167 (6)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(NO3)2(C18H10N4)(H2O)]·H2O
Mr501.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.300 (3), 27.872 (12), 9.950 (4)
β (°) 109.005 (6)
V3)1914.1 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.24 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.792, 0.805
No. of measured, independent and
observed [I > 2σ(I)] reflections
12703, 3338, 2255
Rint0.062
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 0.99
No. of reflections3338
No. of parameters314
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 0.35

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O6i0.83 (2)2.02 (2)2.839 (5)170 (6)
O1W—H1WB···O2Wii0.83 (2)1.81 (2)2.630 (6)169 (6)
O2W—H2WB···O3iii0.83 (2)2.11 (4)2.873 (5)153 (7)
O2W—H2WA···O40.83 (2)1.98 (2)2.798 (5)167 (6)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x1, y+1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province, the Governor Foundation of Guizhou Province and the Natural Science Youth Foundation of Guizhou University (No. 2007–005) for financial support.

References

First citationAmbroise, A. & Maiya, B. G. (2000). Inorg. Chem. 39, 4264–4272.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLo, K. K.-W. & Hui, W.-K. (2005). Inorg. Chem. 44, 1992–2002.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNoro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, K. R. J., Velusamy, M. T. L., Jiann Chuen, C. H. & Tao, Y. T. (2005). Inorg. Chem. 39, 4264–4272.  Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds