metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m473-m474

Acridinium (6-carb­oxy­pyridine-2-carboxyl­ato)(pyridine-2,6-di­carboxyl­ato)zincate(II) penta­hydrate

aDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran, bFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran, and cDepartment of Chemistry, Islamic Azad University, Qom Branch, Qom, Iran
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 24 February 2009; accepted 25 March 2009; online 31 March 2009)

The reaction of Zn(NO3)2 with pyridine-2,6-dicarboxylic acid (pydcH2) and acridine (acr) in aqueous solution leads to the formation of the title compound, (C13H10N)[Zn(C7H3NO4)(C7H4NO4)]·5H2O or (acrH)[Zn(pydcH)(pydc)]·5H2O. In the title compound, the ZnII atom is coordinated by four O atoms and two N atoms from the tridentate chelating rings of (pydc)2− and (pydcH) anions. The geometry of the resulting ZnN2O4 coordination can be described as distorted octa­hedral. To balance the charges, one protonated acridine (acrH)+ cation is present. In the crystal structure, extensive O—H⋯O and N—H⋯O hydrogen bonds involving acrH+, the complex anion and uncoordinated water mol­ecules form a three-dimensional network.

Related literature

For related structures, see: Aghabozorg et al. (2009[Aghabozorg, H., Attar Gharamaleki, J., Olmstead, M. M., Derikvand, Z. & Hooshmand, S. (2009). Acta Cryst. E65, m186-m187.]); Moghimi et al. (2005[Moghimi, A., Sharif, M. A., Shokrollahic, A., Shamsipurc, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902-908.]); Ranjbar et al. (2002[Ranjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. P. A. (2002). Anal. Sci. 18, 219-220.]); Tabatabaee et al. (2008[Tabatabaee, M., Aghabozorg, H., Nasrolahzadeh, R., Roshan, L. & Firoozi, N. (2008). Acta Cryst. E64, m1290.]); Aghabozorg, Attar Gharamaleki et al. (2008[Aghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187-m188.]); Aghabozorg, Firoozi et al. (2008[Aghabozorg, H., Firoozi, N., Roshan, L., Attar Gharamaleki, J. & Ghadermazi, M. (2008). Acta Cryst. E64, m743-m744.]); Aghabozorg, Manteghi et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Safaei-Ghomi et al. (2009[Safaei-Ghomi, J., Aghabozorg, H., Motyeian, E. & Ghadermazi, M. (2009). Acta Cryst. E65, m2-m3.]); Soleimannejad et al. (2008[Soleimannejad, J., Aghabozorg, H. & Hooshmand, S. (2008). Acta Cryst. E64, m564-m565.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H10N)[Zn(C7H3NO4)(C7H4NO4)]·5H2O

  • Mr = 666.89

  • Monoclinic, P 21 /n

  • a = 9.6083 (5) Å

  • b = 18.9681 (9) Å

  • c = 15.5435 (8) Å

  • β = 96.051 (1)°

  • V = 2817.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 120 K

  • 0.60 × 0.14 × 0.14 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.652, Tmax = 0.879

  • 26948 measured reflections

  • 7457 independent reflections

  • 5795 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.06

  • 7457 reflections

  • 445 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N2 2.0011 (16)
Zn1—N1 2.0238 (16)
Zn1—O3 2.0864 (14)
Zn1—O5 2.1443 (15)
Zn1—O7 2.2100 (14)
Zn1—O1 2.3406 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3W 0.88 (4) 1.61 (4) 2.465 (2) 166 (4)
N3—H3N⋯O7 0.83 (3) 1.96 (3) 2.752 (2) 159 (3)
O1W—H1W1⋯O8 0.79 (3) 1.91 (3) 2.696 (2) 174 (3)
O1W—H2W1⋯O4i 0.85 (4) 2.07 (4) 2.901 (2) 165 (3)
O2W—H1W2⋯O4 0.82 (3) 2.07 (3) 2.873 (2) 166 (3)
O2W—H2W2⋯O5Wii 0.86 (3) 1.98 (3) 2.791 (3) 158 (3)
O3W—H1W3⋯O1Wiii 0.85 (4) 1.82 (4) 2.665 (2) 173 (3)
O3W—H2W3⋯O4Wiv 0.85 (4) 1.78 (4) 2.636 (2) 174 (5)
O4W—H1W4⋯O2Wiii 0.81 (4) 1.95 (4) 2.768 (3) 178 (3)
O4W—H2W4⋯O5 0.81 (3) 1.98 (3) 2.788 (2) 172 (4)
O5W—H1W5⋯O6v 0.80 (3) 2.08 (3) 2.880 (2) 173 (3)
O5W—H2W5⋯O6 0.86 (4) 1.99 (5) 2.838 (2) 171 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x-1, y, z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the recent years, our research group has been interested in the synthesis of proton transfer compounds and study of their behavior with metal ions. We have focused on the proton delivery from polycarboxylic acids, which are considered as very good donors and amines as acceptors. Among polycarboxylic acids, pyridine-2,6-dicarboxylic acid (pydcH2) as a very important carboxylate derivative has attracted much interest in coordination chemistry and it is the one that we utilized widely in our studies (Aghabozorg, Attar Gharamaleki et al., 2008; Aghabozorg, Firoozi et al., 2008; Aghabozorg, Manteghi et al., 2008; Tabatabaee et al., 2008; Soleimannejad et al., 2008; Aghabozorg et al., 2009; Safaei-Ghomi et al., 2009). In order to develop novel systems, we wish to report the first complex of ZnII with pyridine-2,6-dicarboxylic acid as proton donor and acridine as proton acceptor.

The title compound consists of [Zn(pydcH)(pydc)]- anion, (acrH)+ cation and five uncoordinated water molecules (Fig. 1). ZnII ionic complex includes dianionic ((pydc)2-) and monoanionic ((pydcH)) forms of pydcH2, simultaneously. ZnII atom is six-coordinated by these anions and the geometry of the resulting ZnN2O4 coordination can be described as distorted octahedral (Table 1). The N atoms occupy the axial positions. The N1—Zn1—N2 angle (167.38 (8)°) deviates from linearity. The dihedral angle between the mean planes of the pyridine rings (A1 and A2, defined in Fig. 1) is 88.16 (9)° indicating that (pydc)2– and (pydcH) fragments are almost perpendicular to each other. Zn—N distances of (2.0011 (16)Å and 2.0238 (16)Å and Zn—O distances (Zn1—O1:2.0864 (14)Å, Zn1—O5: 2.1443 (15)Å, Zn1—O3:2.2100 (14)Å and Zn1—O7: 2.3406 (14)Å) are consistent with those found in (pydaH)[Zn(pydcH)(pydc)].3H2O (Ranjbar et al. 2002) and (creatH)[Zn(pydcH)(pydc)].4H2O (Moghimi et al. 2005). There are some hydrogen bonding interactions such as O–H···O and N–H···O between cations, anions and uncoordinated water molecules (Table 2). The water molecules act also as bridging agents and link anions together via hydrogen bonds (Fig. 2). As it is seen in Fig. 3, there are also π-π stacking interactions between the aromatic rings of the coordinated (pydc)2– and (pydcH)- anions and acridinum cation, with distances of 3.537 (1)Å for Cg5···Cg7 [Cg5: N1/C1—C5, Cg7:N3/C15—C20—C21—C22—C27] and 3.751 (1)Å for Cg6···Cg7 (Cg6:N2/C8—C12). Ion pairing, hydrogen bonding, ππ stacking and van der Waals interactions are also effective packing for the crystal structure. These interactions lead to formation of a three-dimensional supramolecular structure.

Related literature top

For related literature, see: Aghabozorg et al. (2009); Moghimi et al. (2005); Ranjbar et al. (2002); Tabatabaee et al. (2008).

For related literature, see: Aghabozorg, Attar Gharamaleki et al. (2008); Aghabozorg, Firoozi et al. (2008); Aghabozorg, Manteghi et al. (2008); Safaei-Ghomi et al. (2009); Soleimannejad et al. (2008).

Experimental top

An aqueous solution of zinc nitrate (Zn(NO3)2. 6H2O, (0.15 g, 0.5 mmol) in water (20 ml) was added to a stirring solution of (20 ml) pyridine-2,6-dicarboxylic acid (0.1 g, 0.5 mmol) and 0.25 g (1.5 mmol) acridine. The reaction mixture was stirred at 25°C for 2 h. Colorless crystals of the title compound were obtained after two weeks at room temperature.

Refinement top

The H(C) atoms were positioned geometrically and refined in isotropically in riding model with Uiso(H)=1.2Ueq(C). The H atoms of water molecules, OH and NH groups were located in difference Fourier synthesis and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Fragment of crystal packing (projection along c axis). Hydrogen bonds are shown with dashed lines.
[Figure 3] Fig. 3. Representation of π-π stacking in (acrH)[Zn(pydcH)(pydc)].5H2O.
Acridinium (6-carboxypyridine-2-carboxylato)(pyridine-2,6-dicarboxylato)zincate(II) pentahydrate top
Crystal data top
(C13H10N)[Zn(C7H3NO4)(C7H4NO4)]·5H2OF(000) = 1376
Mr = 666.89Dx = 1.572 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8302 reflections
a = 9.6083 (5) Åθ = 2.2–29.7°
b = 18.9681 (9) ŵ = 0.95 mm1
c = 15.5435 (8) ÅT = 120 K
β = 96.051 (1)°Prism, yellow
V = 2817.0 (2) Å30.60 × 0.14 × 0.14 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7457 independent reflections
Radiation source: normal-focus sealed tube5795 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1313
Tmin = 0.652, Tmax = 0.879k = 2525
26948 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0451P)2 + 2.9525P]
where P = (Fo2 + 2Fc2)/3
7457 reflections(Δ/σ)max = 0.002
445 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
(C13H10N)[Zn(C7H3NO4)(C7H4NO4)]·5H2OV = 2817.0 (2) Å3
Mr = 666.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6083 (5) ŵ = 0.95 mm1
b = 18.9681 (9) ÅT = 120 K
c = 15.5435 (8) Å0.60 × 0.14 × 0.14 mm
β = 96.051 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7457 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
5795 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.879Rint = 0.034
26948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.87 e Å3
7457 reflectionsΔρmin = 0.35 e Å3
445 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.49831 (3)0.093889 (12)0.701036 (14)0.01975 (8)
O10.34045 (16)0.18535 (8)0.71906 (9)0.0242 (3)
O20.23932 (16)0.23960 (8)0.82468 (10)0.0231 (3)
H2O0.198 (5)0.261 (2)0.779 (3)0.092 (15)*
O30.63925 (16)0.01596 (8)0.74853 (9)0.0227 (3)
O40.73383 (16)0.03264 (8)0.87279 (10)0.0248 (3)
O50.32802 (16)0.02475 (8)0.65903 (9)0.0229 (3)
O60.20086 (16)0.01389 (8)0.53928 (10)0.0262 (3)
O70.65542 (15)0.17569 (8)0.68086 (9)0.0218 (3)
O80.74307 (17)0.23451 (8)0.57367 (10)0.0269 (3)
N10.48997 (17)0.10445 (8)0.82995 (10)0.0167 (3)
N20.48458 (17)0.10381 (8)0.57225 (10)0.0155 (3)
C10.4084 (2)0.15173 (10)0.86374 (12)0.0182 (4)
C20.4085 (2)0.15979 (10)0.95278 (13)0.0200 (4)
H2A0.34870.19280.97640.024*
C30.5000 (2)0.11747 (11)1.00590 (13)0.0222 (4)
H3A0.50390.12191.06700.027*
C40.5854 (2)0.06882 (11)0.96989 (13)0.0207 (4)
H4A0.64850.04011.00570.025*
C50.5764 (2)0.06307 (10)0.88014 (12)0.0168 (4)
C60.3236 (2)0.19449 (10)0.79562 (13)0.0191 (4)
C70.6578 (2)0.01088 (10)0.83018 (13)0.0193 (4)
C80.3880 (2)0.06609 (10)0.52419 (12)0.0170 (4)
C90.3753 (2)0.07039 (11)0.43455 (12)0.0198 (4)
H9A0.30630.04380.40030.024*
C100.4666 (2)0.11477 (11)0.39627 (13)0.0227 (4)
H10A0.46190.11760.33500.027*
C110.5645 (2)0.15491 (11)0.44730 (13)0.0213 (4)
H11A0.62560.18620.42190.026*
C120.5702 (2)0.14777 (10)0.53652 (12)0.0167 (4)
C130.2970 (2)0.02123 (10)0.57769 (13)0.0190 (4)
C140.6661 (2)0.18976 (10)0.60159 (13)0.0189 (4)
N30.76898 (19)0.21857 (9)0.84229 (12)0.0208 (3)
H3N0.746 (3)0.2148 (15)0.7896 (19)0.037 (8)*
C150.6925 (2)0.26041 (10)0.88993 (13)0.0204 (4)
C160.5844 (2)0.30294 (11)0.85003 (15)0.0255 (4)
H16A0.56730.30480.78870.031*
C170.5043 (3)0.34143 (11)0.90007 (16)0.0302 (5)
H17A0.43040.36950.87310.036*
C180.5291 (3)0.34042 (12)0.99176 (16)0.0321 (5)
H18A0.47080.36711.02530.039*
C190.6361 (3)0.30137 (13)1.03178 (15)0.0311 (5)
H19A0.65380.30211.09310.037*
C200.7215 (2)0.25951 (11)0.98225 (13)0.0238 (4)
C210.8285 (2)0.21652 (12)1.01903 (14)0.0284 (5)
H21A0.84960.21601.08010.034*
C220.9057 (2)0.17410 (11)0.96824 (14)0.0263 (4)
C231.0150 (3)0.12781 (14)1.00362 (18)0.0382 (6)
H23A1.03930.12571.06440.046*
C241.0833 (3)0.08721 (13)0.9503 (2)0.0426 (7)
H24A1.15520.05650.97430.051*
C251.0502 (3)0.08954 (12)0.8598 (2)0.0397 (6)
H25A1.10080.06060.82410.048*
C260.9464 (2)0.13276 (12)0.82196 (17)0.0309 (5)
H26A0.92450.13380.76090.037*
C270.8730 (2)0.17567 (11)0.87635 (14)0.0231 (4)
O1W0.84765 (17)0.32871 (9)0.69335 (11)0.0251 (3)
H1W10.815 (3)0.3033 (16)0.656 (2)0.034 (8)*
H2W10.813 (4)0.369 (2)0.681 (2)0.065 (11)*
O2W0.96559 (18)0.06357 (9)0.77630 (12)0.0279 (3)
H1W20.909 (3)0.0493 (17)0.808 (2)0.045 (9)*
H2W20.940 (3)0.0417 (16)0.729 (2)0.039 (8)*
O3W0.12555 (19)0.31700 (9)0.71080 (10)0.0262 (3)
H1W30.037 (4)0.3180 (18)0.708 (2)0.051 (9)*
H2W30.170 (5)0.356 (2)0.710 (3)0.084 (14)*
O4W0.25508 (19)0.05822 (9)0.79542 (12)0.0302 (4)
H1W40.170 (4)0.0602 (18)0.791 (2)0.049 (10)*
H2W40.268 (4)0.0327 (18)0.755 (2)0.050 (9)*
O5W0.0430 (2)0.01699 (10)0.37439 (12)0.0322 (4)
H1W50.029 (3)0.0086 (15)0.3945 (19)0.031 (7)*
H2W50.099 (4)0.016 (2)0.421 (3)0.066 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02513 (13)0.02160 (13)0.01244 (12)0.00038 (9)0.00163 (9)0.00009 (8)
O10.0300 (8)0.0264 (7)0.0162 (7)0.0090 (6)0.0017 (6)0.0001 (6)
O20.0248 (8)0.0238 (7)0.0208 (7)0.0080 (6)0.0026 (6)0.0013 (6)
O30.0293 (8)0.0239 (7)0.0149 (6)0.0062 (6)0.0015 (6)0.0021 (5)
O40.0279 (8)0.0236 (7)0.0227 (7)0.0082 (6)0.0012 (6)0.0023 (6)
O50.0251 (7)0.0262 (7)0.0172 (7)0.0050 (6)0.0018 (6)0.0018 (6)
O60.0247 (8)0.0276 (8)0.0255 (8)0.0079 (6)0.0008 (6)0.0004 (6)
O70.0266 (8)0.0233 (7)0.0152 (6)0.0052 (6)0.0011 (5)0.0005 (5)
O80.0298 (8)0.0273 (8)0.0236 (7)0.0114 (6)0.0030 (6)0.0003 (6)
N10.0194 (8)0.0174 (7)0.0132 (7)0.0023 (6)0.0014 (6)0.0003 (6)
N20.0166 (8)0.0164 (7)0.0136 (7)0.0014 (6)0.0018 (6)0.0007 (6)
C10.0195 (9)0.0177 (9)0.0178 (9)0.0024 (7)0.0030 (7)0.0010 (7)
C20.0231 (10)0.0189 (9)0.0187 (9)0.0006 (7)0.0046 (7)0.0029 (7)
C30.0281 (10)0.0245 (10)0.0146 (9)0.0029 (8)0.0050 (8)0.0033 (7)
C40.0255 (10)0.0194 (9)0.0168 (9)0.0012 (8)0.0001 (7)0.0021 (7)
C50.0172 (9)0.0153 (8)0.0178 (9)0.0021 (7)0.0005 (7)0.0008 (7)
C60.0193 (9)0.0192 (9)0.0188 (9)0.0004 (7)0.0017 (7)0.0003 (7)
C70.0205 (9)0.0185 (9)0.0190 (9)0.0001 (7)0.0020 (7)0.0004 (7)
C80.0181 (9)0.0151 (8)0.0178 (9)0.0025 (7)0.0014 (7)0.0006 (7)
C90.0212 (10)0.0210 (9)0.0168 (9)0.0002 (7)0.0007 (7)0.0027 (7)
C100.0277 (11)0.0273 (10)0.0130 (9)0.0003 (8)0.0015 (8)0.0003 (7)
C110.0247 (10)0.0221 (9)0.0176 (9)0.0013 (8)0.0045 (8)0.0023 (7)
C120.0173 (9)0.0161 (8)0.0164 (8)0.0017 (7)0.0004 (7)0.0000 (7)
C130.0200 (9)0.0170 (9)0.0203 (9)0.0007 (7)0.0031 (7)0.0007 (7)
C140.0192 (9)0.0177 (9)0.0197 (9)0.0009 (7)0.0014 (7)0.0015 (7)
N30.0238 (9)0.0194 (8)0.0183 (8)0.0032 (7)0.0024 (7)0.0010 (6)
C150.0220 (10)0.0191 (9)0.0197 (9)0.0058 (7)0.0007 (7)0.0009 (7)
C160.0284 (11)0.0206 (10)0.0267 (10)0.0008 (8)0.0011 (8)0.0020 (8)
C170.0298 (12)0.0193 (10)0.0418 (13)0.0009 (8)0.0054 (10)0.0004 (9)
C180.0361 (13)0.0248 (11)0.0375 (13)0.0055 (9)0.0132 (10)0.0072 (9)
C190.0388 (13)0.0325 (12)0.0233 (10)0.0139 (10)0.0084 (9)0.0064 (9)
C200.0277 (11)0.0225 (10)0.0206 (10)0.0095 (8)0.0006 (8)0.0002 (8)
C210.0327 (12)0.0317 (11)0.0193 (10)0.0119 (9)0.0049 (9)0.0051 (8)
C220.0240 (10)0.0238 (10)0.0289 (11)0.0070 (8)0.0081 (8)0.0083 (8)
C230.0312 (13)0.0341 (13)0.0452 (14)0.0058 (10)0.0146 (11)0.0147 (11)
C240.0259 (12)0.0279 (12)0.070 (2)0.0008 (10)0.0132 (12)0.0085 (12)
C250.0268 (12)0.0219 (11)0.0692 (19)0.0018 (9)0.0003 (12)0.0086 (11)
C260.0247 (11)0.0251 (11)0.0424 (13)0.0023 (9)0.0014 (10)0.0060 (9)
C270.0213 (10)0.0190 (9)0.0280 (10)0.0059 (8)0.0028 (8)0.0014 (8)
O1W0.0268 (8)0.0240 (8)0.0233 (8)0.0020 (6)0.0036 (6)0.0009 (6)
O2W0.0274 (8)0.0299 (8)0.0273 (8)0.0023 (7)0.0068 (7)0.0007 (7)
O3W0.0239 (8)0.0250 (8)0.0290 (8)0.0035 (6)0.0010 (6)0.0002 (6)
O4W0.0274 (9)0.0298 (9)0.0341 (9)0.0025 (7)0.0064 (7)0.0095 (7)
O5W0.0264 (9)0.0412 (10)0.0288 (9)0.0026 (7)0.0019 (7)0.0048 (7)
Geometric parameters (Å, º) top
Zn1—N22.0011 (16)N3—C271.352 (3)
Zn1—N12.0238 (16)N3—C151.354 (3)
Zn1—O32.0864 (14)N3—H3N0.83 (3)
Zn1—O52.1443 (15)C15—C161.407 (3)
Zn1—O72.2100 (14)C15—C201.433 (3)
Zn1—O12.3406 (14)C16—C171.362 (3)
O1—C61.230 (2)C16—H16A0.9500
O2—C61.292 (2)C17—C181.420 (4)
O2—H2O0.87 (5)C17—H17A0.9500
O3—C71.267 (2)C18—C191.363 (4)
O4—C71.246 (2)C18—H18A0.9500
O5—C131.270 (2)C19—C201.425 (3)
O6—C131.240 (2)C19—H19A0.9500
O7—C141.275 (2)C20—C211.387 (3)
O8—C141.234 (2)C21—C221.395 (3)
N1—C51.334 (2)C21—H21A0.9500
N1—C11.335 (2)C22—C271.430 (3)
N2—C121.333 (2)C22—C231.433 (3)
N2—C81.336 (2)C23—C241.351 (4)
C1—C21.392 (3)C23—H23A0.9500
C1—C61.503 (3)C24—C251.411 (4)
C2—C31.395 (3)C24—H24A0.9500
C2—H2A0.9500C25—C261.374 (4)
C3—C41.391 (3)C25—H25A0.9500
C3—H3A0.9500C26—C271.414 (3)
C4—C51.393 (3)C26—H26A0.9500
C4—H4A0.9500O1W—H1W10.79 (3)
C5—C71.524 (3)O1W—H2W10.84 (4)
C8—C91.388 (3)O2W—H1W20.82 (3)
C8—C131.527 (3)O2W—H2W20.85 (3)
C9—C101.394 (3)O3W—H1W30.85 (4)
C9—H9A0.9500O3W—H2W30.85 (5)
C10—C111.392 (3)O4W—H1W40.82 (4)
C10—H10A0.9500O4W—H2W40.81 (4)
C11—C121.389 (3)O5W—H1W50.80 (3)
C11—H11A0.9500O5W—H2W50.86 (4)
C12—C141.520 (3)
N2—Zn1—N1167.38 (7)C10—C11—H11A121.0
N2—Zn1—O3113.11 (6)N2—C12—C11121.08 (18)
N1—Zn1—O379.15 (6)N2—C12—C14114.08 (16)
N2—Zn1—O577.60 (6)C11—C12—C14124.79 (18)
N1—Zn1—O5104.68 (6)O6—C13—O5126.33 (19)
O3—Zn1—O596.92 (6)O6—C13—C8118.50 (17)
N2—Zn1—O776.47 (6)O5—C13—C8115.16 (17)
N1—Zn1—O799.78 (6)O8—C14—O7126.56 (18)
O3—Zn1—O796.89 (6)O8—C14—C12118.05 (17)
O5—Zn1—O7153.75 (5)O7—C14—C12115.37 (17)
N2—Zn1—O194.29 (6)C27—N3—C15124.05 (19)
N1—Zn1—O173.40 (6)C27—N3—H3N116 (2)
O3—Zn1—O1152.55 (5)C15—N3—H3N119 (2)
O5—Zn1—O190.37 (6)N3—C15—C16120.89 (19)
O7—Zn1—O187.57 (6)N3—C15—C20118.76 (19)
C6—O1—Zn1111.93 (13)C16—C15—C20120.3 (2)
C6—O2—H2O106 (3)C17—C16—C15119.4 (2)
C7—O3—Zn1115.21 (12)C17—C16—H16A120.3
C13—O5—Zn1115.26 (12)C15—C16—H16A120.3
C14—O7—Zn1114.18 (12)C16—C17—C18121.4 (2)
C5—N1—C1121.40 (17)C16—C17—H17A119.3
C5—N1—Zn1115.70 (13)C18—C17—H17A119.3
C1—N1—Zn1122.84 (13)C19—C18—C17120.3 (2)
C12—N2—C8121.65 (16)C19—C18—H18A119.9
C12—N2—Zn1119.81 (13)C17—C18—H18A119.9
C8—N2—Zn1118.53 (13)C18—C19—C20120.4 (2)
N1—C1—C2121.71 (18)C18—C19—H19A119.8
N1—C1—C6112.49 (16)C20—C19—H19A119.8
C2—C1—C6125.77 (18)C21—C20—C19123.3 (2)
C1—C2—C3117.39 (18)C21—C20—C15118.5 (2)
C1—C2—H2A121.3C19—C20—C15118.2 (2)
C3—C2—H2A121.3C20—C21—C22121.4 (2)
C4—C3—C2120.34 (18)C20—C21—H21A119.3
C4—C3—H3A119.8C22—C21—H21A119.3
C2—C3—H3A119.8C21—C22—C27118.6 (2)
C3—C4—C5118.55 (18)C21—C22—C23123.2 (2)
C3—C4—H4A120.7C27—C22—C23118.1 (2)
C5—C4—H4A120.7C24—C23—C22119.9 (2)
N1—C5—C4120.58 (18)C24—C23—H23A120.1
N1—C5—C7113.94 (16)C22—C23—H23A120.1
C4—C5—C7125.47 (18)C23—C24—C25121.4 (2)
O1—C6—O2125.66 (19)C23—C24—H24A119.3
O1—C6—C1119.23 (18)C25—C24—H24A119.3
O2—C6—C1115.09 (17)C26—C25—C24121.5 (3)
O4—C7—O3126.57 (19)C26—C25—H25A119.2
O4—C7—C5117.59 (17)C24—C25—H25A119.2
O3—C7—C5115.84 (17)C25—C26—C27118.2 (2)
N2—C8—C9120.81 (18)C25—C26—H26A120.9
N2—C8—C13113.42 (16)C27—C26—H26A120.9
C9—C8—C13125.76 (18)N3—C27—C26120.4 (2)
C8—C9—C10118.12 (18)N3—C27—C22118.6 (2)
C8—C9—H9A120.9C26—C27—C22120.9 (2)
C10—C9—H9A120.9H1W1—O1W—H2W1105 (3)
C11—C10—C9120.35 (18)H1W2—O2W—H2W2102 (3)
C11—C10—H10A119.8H1W3—O3W—H2W3119 (4)
C9—C10—H10A119.8H1W4—O4W—H2W4101 (3)
C12—C11—C10117.95 (19)H1W5—O5W—H2W599 (3)
C12—C11—H11A121.0
N2—Zn1—O1—C6179.71 (14)Zn1—O3—C7—C51.0 (2)
N1—Zn1—O1—C62.52 (14)N1—C5—C7—O4175.43 (18)
O3—Zn1—O1—C63.2 (2)C4—C5—C7—O43.6 (3)
O5—Zn1—O1—C6102.70 (14)N1—C5—C7—O33.8 (3)
O7—Zn1—O1—C6103.48 (14)C4—C5—C7—O3177.18 (19)
N2—Zn1—O3—C7175.78 (14)C12—N2—C8—C91.3 (3)
N1—Zn1—O3—C71.10 (14)Zn1—N2—C8—C9179.21 (14)
O5—Zn1—O3—C7104.79 (15)C12—N2—C8—C13177.72 (16)
O7—Zn1—O3—C797.59 (14)Zn1—N2—C8—C131.8 (2)
O1—Zn1—O3—C70.5 (2)N2—C8—C9—C100.4 (3)
N2—Zn1—O5—C130.03 (14)C13—C8—C9—C10179.29 (18)
N1—Zn1—O5—C13167.26 (14)C8—C9—C10—C111.8 (3)
O3—Zn1—O5—C13112.19 (14)C9—C10—C11—C121.6 (3)
O7—Zn1—O5—C139.1 (2)C8—N2—C12—C111.5 (3)
O1—Zn1—O5—C1394.34 (14)Zn1—N2—C12—C11178.99 (14)
N2—Zn1—O7—C141.10 (13)C8—N2—C12—C14176.01 (16)
N1—Zn1—O7—C14168.79 (14)Zn1—N2—C12—C143.5 (2)
O3—Zn1—O7—C14111.08 (14)C10—C11—C12—N20.0 (3)
O5—Zn1—O7—C1410.2 (2)C10—C11—C12—C14177.22 (19)
O1—Zn1—O7—C1496.10 (14)Zn1—O5—C13—O6178.26 (17)
N2—Zn1—N1—C5163.5 (3)Zn1—O5—C13—C80.8 (2)
O3—Zn1—N1—C53.30 (13)N2—C8—C13—O6177.49 (17)
O5—Zn1—N1—C597.69 (14)C9—C8—C13—O61.5 (3)
O7—Zn1—N1—C591.92 (14)N2—C8—C13—O51.7 (2)
O1—Zn1—N1—C5176.39 (15)C9—C8—C13—O5179.34 (19)
N2—Zn1—N1—C113.6 (4)Zn1—O7—C14—O8177.92 (17)
O3—Zn1—N1—C1179.60 (16)Zn1—O7—C14—C120.3 (2)
O5—Zn1—N1—C185.21 (15)N2—C12—C14—O8176.04 (18)
O7—Zn1—N1—C185.18 (15)C11—C12—C14—O81.4 (3)
O1—Zn1—N1—C10.71 (14)N2—C12—C14—O72.3 (2)
N1—Zn1—N2—C1276.6 (3)C11—C12—C14—O7179.78 (19)
O3—Zn1—N2—C1289.25 (15)C27—N3—C15—C16179.05 (19)
O5—Zn1—N2—C12178.44 (15)C27—N3—C15—C200.4 (3)
O7—Zn1—N2—C122.55 (14)N3—C15—C16—C17176.4 (2)
O1—Zn1—N2—C1289.01 (14)C20—C15—C16—C172.2 (3)
N1—Zn1—N2—C8102.9 (3)C15—C16—C17—C181.0 (3)
O3—Zn1—N2—C891.25 (14)C16—C17—C18—C191.1 (3)
O5—Zn1—N2—C81.06 (13)C17—C18—C19—C201.9 (3)
O7—Zn1—N2—C8176.94 (15)C18—C19—C20—C21177.4 (2)
O1—Zn1—N2—C890.49 (14)C18—C19—C20—C150.7 (3)
C5—N1—C1—C20.5 (3)N3—C15—C20—C211.0 (3)
Zn1—N1—C1—C2177.47 (14)C16—C15—C20—C21179.63 (19)
C5—N1—C1—C6177.80 (17)N3—C15—C20—C19177.22 (18)
Zn1—N1—C1—C60.9 (2)C16—C15—C20—C191.4 (3)
N1—C1—C2—C31.4 (3)C19—C20—C21—C22177.2 (2)
C6—C1—C2—C3176.73 (19)C15—C20—C21—C220.9 (3)
C1—C2—C3—C40.8 (3)C20—C21—C22—C270.2 (3)
C2—C3—C4—C50.6 (3)C20—C21—C22—C23178.6 (2)
C1—N1—C5—C40.9 (3)C21—C22—C23—C24178.6 (2)
Zn1—N1—C5—C4176.22 (14)C27—C22—C23—C240.2 (3)
C1—N1—C5—C7178.16 (17)C22—C23—C24—C250.4 (4)
Zn1—N1—C5—C74.7 (2)C23—C24—C25—C260.5 (4)
C3—C4—C5—N11.5 (3)C24—C25—C26—C270.3 (4)
C3—C4—C5—C7177.51 (19)C15—N3—C27—C26178.98 (19)
Zn1—O1—C6—O2177.61 (16)C15—N3—C27—C220.3 (3)
Zn1—O1—C6—C13.8 (2)C25—C26—C27—N3179.3 (2)
N1—C1—C6—O13.4 (3)C25—C26—C27—C220.1 (3)
C2—C1—C6—O1174.9 (2)C21—C22—C27—N30.4 (3)
N1—C1—C6—O2177.91 (17)C23—C22—C27—N3179.27 (19)
C2—C1—C6—O23.8 (3)C21—C22—C27—C26178.9 (2)
Zn1—O3—C7—O4178.12 (17)C23—C22—C27—C260.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3W0.88 (4)1.61 (4)2.465 (2)166 (4)
N3—H3N···O70.83 (3)1.96 (3)2.752 (2)159 (3)
O1W—H1W1···O80.79 (3)1.91 (3)2.696 (2)174 (3)
O1W—H2W1···O4i0.85 (4)2.07 (4)2.901 (2)165 (3)
O2W—H1W2···O40.82 (3)2.07 (3)2.873 (2)166 (3)
O2W—H2W2···O5Wii0.86 (3)1.98 (3)2.791 (3)158 (3)
O3W—H1W3···O1Wiii0.85 (4)1.82 (4)2.665 (2)173 (3)
O3W—H2W3···O4Wiv0.85 (4)1.78 (4)2.636 (2)174 (5)
O4W—H1W4···O2Wiii0.81 (4)1.95 (4)2.768 (3)178 (3)
O4W—H2W4···O50.81 (3)1.98 (3)2.788 (2)172 (4)
O5W—H1W5···O6v0.80 (3)2.08 (3)2.880 (2)173 (3)
O5W—H2W5···O60.86 (4)1.99 (5)2.838 (2)171 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+1/2, y+1/2, z+3/2; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula(C13H10N)[Zn(C7H3NO4)(C7H4NO4)]·5H2O
Mr666.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.6083 (5), 18.9681 (9), 15.5435 (8)
β (°) 96.051 (1)
V3)2817.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.60 × 0.14 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.652, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
26948, 7457, 5795
Rint0.034
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.06
No. of reflections7457
No. of parameters445
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 0.35

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N22.0011 (16)Zn1—O52.1443 (15)
Zn1—N12.0238 (16)Zn1—O72.2100 (14)
Zn1—O32.0864 (14)Zn1—O12.3406 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3W0.88 (4)1.61 (4)2.465 (2)166 (4)
N3—H3N···O70.83 (3)1.96 (3)2.752 (2)159 (3)
O1W—H1W1···O80.79 (3)1.91 (3)2.696 (2)174 (3)
O1W—H2W1···O4i0.85 (4)2.07 (4)2.901 (2)165 (3)
O2W—H1W2···O40.82 (3)2.07 (3)2.873 (2)166 (3)
O2W—H2W2···O5Wii0.86 (3)1.98 (3)2.791 (3)158 (3)
O3W—H1W3···O1Wiii0.85 (4)1.82 (4)2.665 (2)173 (3)
O3W—H2W3···O4Wiv0.85 (4)1.78 (4)2.636 (2)174 (5)
O4W—H1W4···O2Wiii0.81 (4)1.95 (4)2.768 (3)178 (3)
O4W—H2W4···O50.81 (3)1.98 (3)2.788 (2)172 (4)
O5W—H1W5···O6v0.80 (3)2.08 (3)2.880 (2)173 (3)
O5W—H2W5···O60.86 (4)1.99 (5)2.838 (2)171 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x+1/2, y+1/2, z+3/2; (v) x, y, z+1.
 

Acknowledgements

The authors express their appreciation to the Islamic Azad University, Yazd Branch, for financial support of this work.

References

First citationAghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m187–m188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Attar Gharamaleki, J., Olmstead, M. M., Derikvand, Z. & Hooshmand, S. (2009). Acta Cryst. E65, m186–m187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Firoozi, N., Roshan, L., Attar Gharamaleki, J. & Ghadermazi, M. (2008). Acta Cryst. E64, m743–m744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMoghimi, A., Sharif, M. A., Shokrollahic, A., Shamsipurc, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationRanjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. P. A. (2002). Anal. Sci. 18, 219–220.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSafaei-Ghomi, J., Aghabozorg, H., Motyeian, E. & Ghadermazi, M. (2009). Acta Cryst. E65, m2–m3.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoleimannejad, J., Aghabozorg, H. & Hooshmand, S. (2008). Acta Cryst. E64, m564–m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabatabaee, M., Aghabozorg, H., Nasrolahzadeh, R., Roshan, L. & Firoozi, N. (2008). Acta Cryst. E64, m1290.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m473-m474
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds