organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Bromo-2-meth­oxy­benzyl­­idene)-3-meth­oxy­benzohydrazide

aCollege of Science, Shenyang University, Shenyang 110044, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: hongyan_ban@163.com

(Received 12 March 2009; accepted 20 March 2009; online 28 March 2009)

In the title compound, C16H15BrN2O3, there are two independent mol­ecules (A and B) in the asymmetric unit. The major difference between the two mol­ecules is the dihedral angle formed by the aromatic rings [72.6 (2) and 18.8 (2)° for A and B, respectively]. The benzohydrazide groups are not planar and the mol­ecules exist in trans configurations with respect to the methyl­idene units. The mol­ecular packing is stabilized by two inter­molecular N—H⋯O hydrogen bonds, forming chains parallel to the c axis. Only the A mol­ecules of the asymmetric unit are held together by ππ inter­actions [centroid–centroid distance = 3.714 (3) Å].

Related literature

For the biological activities of hydrazones, see: Zhong et al. (2007[Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]); Jimenez-Pulido et al. (2008[Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677-1683.]). For related structures, see: Ban & Li (2008a[Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.],b[Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.]); Yehye et al. (2008[Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.]); Fun et al. (2008a[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o1594-o1595.],b[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1707.]);Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15BrN2O3

  • Mr = 363.21

  • Monoclinic, P 21 /c

  • a = 29.063 (3) Å

  • b = 10.934 (2) Å

  • c = 9.913 (2) Å

  • β = 96.77 (3)°

  • V = 3128.1 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 298 K

  • 0.35 × 0.33 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.458, Tmax = 0.505 (expected range = 0.411–0.453)

  • 25535 measured reflections

  • 6785 independent reflections

  • 3586 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.163

  • S = 1.03

  • 6785 reflections

  • 407 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (3) 2.03 (3) 2.872 (5) 155 (5)
N4—H4A⋯O5ii 0.90 (3) 2.04 (3) 2.868 (5) 153 (5)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a great deal of hydrazones have been synthesized and structurally characterized (Yehye et al., 2008; Fun et al., 2008a,b; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported two hydrazones (Ban & Li, 2008a,b). In this paper, we report herein the crytal structure of the title new compound, (I).

In the structure of the title compound, Fig. 1, there are two independent molecules. Each molecule exists in a trans configuration with respect to the methylidene unit. The dihedral angles between the two substituted benzene rings are 72.6 (2) and 18.8 (2)°, respectively. The torsion angles of C7-N1-N2-C8 and C22-N3-N4-C23 are 12.2 (3) and 4.6 (3)°, respectively. The molecular packing is stabilized by two intermolecular N-H···O hydrogen bond to form chains parallel to the c axis, Fig 2. Only the A molecules of the asymmetric unit are held together by π - π interactions [Cg···Cgi(-x+1, -y,-z+1) = 3.714 (3) Å; Cg is the centroid of the C1–C6 ring].

Related literature top

For the biological activities of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban & Li (2008a,b); Yehye et al. (2008); Fun et al. (2008a,b);Yang et al. (2008); Ejsmont et al. (2008).

Experimental top

The compound was prepared by refluxing 5-bromo-2-methoxybenzaldehyde (1.0 mol, 215.0 mg) with 3-methoxybenzohydrazide (1.0 mol, 166.2 mg) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. The colourless solid product was filtered, and washed three times with methanol. Colourless block crystals of the title compound were obtained from a methanol solution by slow evaporation in air.

Refinement top

H2 and H4A were located in a difference Fourier map and refined isotropically, with N–H distances restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions (C–H = 0.93 - 0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms. The independent molecules are labelled as A and B.
[Figure 2] Fig. 2. The packing diagram of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.
(E)-N'-(5-Bromo-2-methoxybenzylidene)-3-methoxybenzohydrazide top
Crystal data top
C16H15BrN2O3F(000) = 1472
Mr = 363.21Dx = 1.542 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2210 reflections
a = 29.063 (3) Åθ = 2.4–25.0°
b = 10.934 (2) ŵ = 2.64 mm1
c = 9.913 (2) ÅT = 298 K
β = 96.77 (3)°Block, colourless
V = 3128.1 (9) Å30.35 × 0.33 × 0.30 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
6785 independent reflections
Radiation source: fine-focus sealed tube3586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ω scansθmax = 27.0°, θmin = 0.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3636
Tmin = 0.458, Tmax = 0.505k = 1313
25535 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0638P)2]
where P = (Fo2 + 2Fc2)/3
6785 reflections(Δ/σ)max = 0.002
407 parametersΔρmax = 0.65 e Å3
2 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H15BrN2O3V = 3128.1 (9) Å3
Mr = 363.21Z = 8
Monoclinic, P21/cMo Kα radiation
a = 29.063 (3) ŵ = 2.64 mm1
b = 10.934 (2) ÅT = 298 K
c = 9.913 (2) Å0.35 × 0.33 × 0.30 mm
β = 96.77 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6785 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3586 reflections with I > 2σ(I)
Tmin = 0.458, Tmax = 0.505Rint = 0.076
25535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0582 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.65 e Å3
6785 reflectionsΔρmin = 0.38 e Å3
407 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.438449 (17)0.08256 (5)0.10000 (5)0.0545 (2)
Br21.065761 (17)0.43703 (5)0.40596 (5)0.0581 (2)
O10.58800 (11)0.0965 (3)0.5745 (3)0.0532 (9)
O20.65071 (10)0.2123 (3)0.0643 (3)0.0447 (8)
O30.82081 (12)0.3545 (4)0.1065 (4)0.0733 (12)
O40.91879 (10)0.3807 (3)0.0700 (3)0.0421 (8)
O50.85418 (11)0.7479 (3)0.4006 (3)0.0490 (9)
O60.68171 (11)0.8009 (4)0.0299 (4)0.0617 (11)
N10.60720 (11)0.1219 (3)0.2680 (4)0.0322 (9)
N20.64423 (12)0.2014 (3)0.2890 (3)0.0311 (9)
N30.89398 (11)0.6183 (3)0.2154 (3)0.0294 (8)
N40.85570 (11)0.6914 (3)0.1825 (3)0.0279 (8)
C10.55693 (15)0.0144 (4)0.3641 (5)0.0336 (11)
C20.55304 (16)0.0983 (4)0.4708 (5)0.0380 (11)
C30.51509 (16)0.1751 (4)0.4633 (5)0.0439 (12)
H30.51260.23160.53220.053*
C40.48093 (16)0.1689 (4)0.3547 (5)0.0461 (13)
H40.45510.21940.35160.055*
C50.48517 (16)0.0880 (4)0.2512 (5)0.0400 (12)
C60.52270 (15)0.0118 (4)0.2540 (5)0.0371 (11)
H60.52520.04160.18230.045*
C70.59695 (15)0.0686 (4)0.3739 (5)0.0346 (11)
H70.61460.08190.45710.042*
C80.66335 (14)0.2452 (4)0.1807 (4)0.0295 (10)
C90.70434 (15)0.3267 (4)0.2147 (4)0.0341 (11)
C100.74124 (15)0.3062 (4)0.1390 (4)0.0386 (11)
H100.73860.24890.06920.046*
C110.78178 (17)0.3722 (4)0.1689 (5)0.0487 (13)
C120.7840 (2)0.4613 (5)0.2699 (5)0.0573 (16)
H120.81110.50630.29030.069*
C130.7479 (2)0.4832 (5)0.3381 (6)0.0625 (16)
H130.74980.54440.40370.075*
C140.70764 (19)0.4158 (4)0.3121 (5)0.0522 (14)
H140.68280.43100.36090.063*
C150.82060 (19)0.2521 (6)0.0171 (6)0.0752 (19)
H15A0.81370.17910.06470.113*
H15B0.85050.24430.01420.113*
H15C0.79750.26410.05920.113*
C160.94706 (14)0.4789 (4)0.1332 (4)0.0285 (10)
C170.95361 (15)0.3906 (4)0.0343 (4)0.0320 (10)
C180.99351 (16)0.3197 (4)0.0470 (5)0.0398 (12)
H180.99770.26140.01880.048*
C191.02690 (15)0.3349 (4)0.1562 (5)0.0413 (12)
H191.05380.28800.16360.050*
C201.02034 (15)0.4200 (4)0.2547 (5)0.0391 (12)
C210.98093 (15)0.4919 (4)0.2430 (4)0.0347 (11)
H210.97710.54970.30960.042*
C220.90613 (14)0.5574 (4)0.1158 (4)0.0289 (10)
H220.88870.56300.03100.035*
C230.83808 (15)0.7528 (4)0.2815 (5)0.0324 (10)
C240.79532 (15)0.8269 (4)0.2384 (4)0.0319 (10)
C250.76058 (14)0.7787 (4)0.1458 (4)0.0377 (11)
H250.76500.70460.10310.045*
C260.71882 (16)0.8424 (5)0.1170 (5)0.0455 (13)
C270.71308 (19)0.9548 (5)0.1785 (6)0.0530 (14)
H270.68570.99860.15920.064*
C280.74795 (19)0.9991 (5)0.2667 (6)0.0619 (16)
H280.74421.07470.30690.074*
C290.78892 (19)0.9369 (4)0.2998 (5)0.0528 (14)
H290.81190.96920.36290.063*
C300.68602 (19)0.6876 (6)0.0361 (6)0.0719 (18)
H30A0.71320.68880.08260.108*
H30B0.65920.67410.10050.108*
H30C0.68870.62300.03000.108*
C310.92295 (18)0.2885 (5)0.1714 (5)0.0604 (16)
H31A0.94970.30530.21670.091*
H31B0.89570.28910.23630.091*
H31C0.92630.20970.12860.091*
C320.58764 (19)0.1863 (5)0.6795 (5)0.0688 (17)
H32A0.55990.17740.72260.103*
H32B0.61420.17500.74550.103*
H32C0.58850.26660.64070.103*
H20.6553 (18)0.222 (5)0.374 (2)0.080*
H4A0.8453 (17)0.713 (5)0.097 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0435 (3)0.0704 (4)0.0482 (4)0.0108 (3)0.0001 (3)0.0070 (3)
Br20.0421 (3)0.0750 (4)0.0537 (4)0.0093 (3)0.0090 (3)0.0077 (3)
O10.048 (2)0.063 (2)0.048 (2)0.0067 (18)0.0005 (17)0.0185 (19)
O20.0447 (19)0.061 (2)0.0287 (19)0.0067 (17)0.0045 (15)0.0080 (17)
O30.054 (2)0.085 (3)0.087 (3)0.033 (2)0.035 (2)0.022 (3)
O40.0378 (19)0.048 (2)0.041 (2)0.0007 (16)0.0059 (15)0.0140 (16)
O50.049 (2)0.066 (2)0.0299 (19)0.0205 (18)0.0017 (16)0.0133 (17)
O60.036 (2)0.082 (3)0.064 (3)0.0124 (19)0.0072 (18)0.001 (2)
N10.0269 (19)0.036 (2)0.034 (2)0.0021 (17)0.0063 (17)0.0014 (18)
N20.029 (2)0.035 (2)0.030 (2)0.0038 (17)0.0073 (17)0.0003 (18)
N30.0254 (19)0.032 (2)0.031 (2)0.0009 (16)0.0030 (16)0.0021 (17)
N40.0250 (19)0.032 (2)0.027 (2)0.0053 (16)0.0045 (16)0.0020 (17)
C10.036 (3)0.034 (3)0.034 (3)0.002 (2)0.013 (2)0.004 (2)
C20.036 (3)0.037 (3)0.042 (3)0.002 (2)0.010 (2)0.001 (2)
C30.047 (3)0.037 (3)0.050 (3)0.006 (2)0.014 (3)0.009 (2)
C40.040 (3)0.043 (3)0.057 (4)0.009 (2)0.014 (3)0.008 (3)
C50.039 (3)0.047 (3)0.035 (3)0.006 (2)0.010 (2)0.007 (2)
C60.039 (3)0.036 (3)0.037 (3)0.004 (2)0.010 (2)0.002 (2)
C70.036 (3)0.035 (3)0.033 (3)0.000 (2)0.006 (2)0.000 (2)
C80.026 (2)0.033 (3)0.030 (3)0.0083 (19)0.007 (2)0.008 (2)
C90.035 (3)0.033 (3)0.036 (3)0.001 (2)0.010 (2)0.001 (2)
C100.043 (3)0.036 (3)0.039 (3)0.004 (2)0.011 (2)0.004 (2)
C110.050 (3)0.048 (3)0.052 (3)0.014 (3)0.020 (3)0.002 (3)
C120.080 (4)0.042 (3)0.054 (4)0.030 (3)0.025 (3)0.010 (3)
C130.085 (4)0.048 (4)0.060 (4)0.023 (3)0.029 (3)0.019 (3)
C140.067 (4)0.040 (3)0.054 (4)0.009 (3)0.028 (3)0.007 (3)
C150.053 (4)0.095 (5)0.086 (5)0.009 (3)0.040 (3)0.022 (4)
C160.032 (2)0.029 (2)0.026 (2)0.0022 (19)0.0094 (19)0.0029 (19)
C170.032 (3)0.035 (3)0.031 (3)0.006 (2)0.010 (2)0.002 (2)
C180.044 (3)0.032 (3)0.046 (3)0.005 (2)0.017 (2)0.002 (2)
C190.034 (3)0.040 (3)0.051 (3)0.009 (2)0.010 (2)0.013 (3)
C200.033 (3)0.039 (3)0.045 (3)0.001 (2)0.001 (2)0.015 (2)
C210.037 (3)0.035 (3)0.033 (3)0.000 (2)0.008 (2)0.002 (2)
C220.027 (2)0.033 (3)0.027 (2)0.0007 (19)0.0032 (19)0.000 (2)
C230.036 (3)0.029 (3)0.032 (3)0.002 (2)0.002 (2)0.000 (2)
C240.039 (3)0.029 (3)0.028 (3)0.002 (2)0.006 (2)0.002 (2)
C250.042 (3)0.035 (3)0.036 (3)0.011 (2)0.008 (2)0.002 (2)
C260.041 (3)0.053 (3)0.044 (3)0.011 (3)0.011 (2)0.010 (3)
C270.055 (3)0.041 (3)0.063 (4)0.026 (3)0.009 (3)0.005 (3)
C280.071 (4)0.034 (3)0.080 (4)0.019 (3)0.006 (3)0.005 (3)
C290.066 (4)0.041 (3)0.051 (3)0.012 (3)0.002 (3)0.009 (3)
C300.049 (3)0.096 (5)0.068 (4)0.003 (3)0.004 (3)0.017 (4)
C310.060 (3)0.072 (4)0.051 (3)0.002 (3)0.015 (3)0.031 (3)
C320.071 (4)0.080 (4)0.053 (4)0.005 (3)0.001 (3)0.030 (3)
Geometric parameters (Å, º) top
Br1—C51.901 (5)C12—H120.9300
Br2—C201.886 (5)C13—C141.381 (7)
O1—C21.358 (5)C13—H130.9300
O1—C321.431 (6)C14—H140.9300
O2—C81.223 (5)C15—H15A0.9600
O3—C111.369 (5)C15—H15B0.9600
O3—C151.426 (6)C15—H15C0.9600
O4—C171.363 (5)C16—C211.386 (6)
O4—C311.438 (5)C16—C171.405 (6)
O5—C231.219 (5)C16—C221.460 (6)
O6—C261.376 (6)C17—C181.388 (6)
O6—C301.414 (6)C18—C191.376 (6)
N1—C71.267 (5)C18—H180.9300
N1—N21.380 (5)C19—C201.378 (6)
N2—C81.353 (5)C19—H190.9300
N2—H20.90 (3)C20—C211.383 (6)
N3—C221.275 (5)C21—H210.9300
N3—N41.377 (4)C22—H220.9300
N4—C231.339 (5)C23—C241.503 (6)
N4—H4A0.90 (3)C24—C291.371 (6)
C1—C61.388 (6)C24—C251.386 (6)
C1—C21.414 (6)C25—C261.399 (6)
C1—C71.470 (6)C25—H250.9300
C2—C31.382 (6)C26—C271.391 (7)
C3—C41.377 (6)C27—C281.348 (7)
C3—H30.9300C27—H270.9300
C4—C51.372 (6)C28—C291.377 (7)
C4—H40.9300C28—H280.9300
C5—C61.370 (6)C29—H290.9300
C6—H60.9300C30—H30A0.9600
C7—H70.9300C30—H30B0.9600
C8—C91.494 (6)C30—H30C0.9600
C9—C141.367 (6)C31—H31A0.9600
C9—C101.397 (6)C31—H31B0.9600
C10—C111.384 (6)C31—H31C0.9600
C10—H100.9300C32—H32A0.9600
C11—C121.393 (7)C32—H32B0.9600
C12—C131.336 (7)C32—H32C0.9600
C2—O1—C32118.2 (4)C21—C16—C17118.5 (4)
C11—O3—C15116.7 (4)C21—C16—C22121.7 (4)
C17—O4—C31118.0 (4)C17—C16—C22119.8 (4)
C26—O6—C30118.2 (4)O4—C17—C18124.2 (4)
C7—N1—N2114.8 (4)O4—C17—C16115.8 (4)
C8—N2—N1119.3 (4)C18—C17—C16120.1 (4)
C8—N2—H2122 (4)C19—C18—C17120.5 (4)
N1—N2—H2119 (4)C19—C18—H18119.7
C22—N3—N4114.2 (3)C17—C18—H18119.7
C23—N4—N3119.1 (3)C18—C19—C20119.7 (4)
C23—N4—H4A117 (3)C18—C19—H19120.2
N3—N4—H4A123 (3)C20—C19—H19120.2
C6—C1—C2119.2 (4)C19—C20—C21120.5 (4)
C6—C1—C7121.8 (4)C19—C20—Br2119.2 (3)
C2—C1—C7119.0 (4)C21—C20—Br2120.4 (4)
O1—C2—C3124.8 (4)C20—C21—C16120.8 (4)
O1—C2—C1116.0 (4)C20—C21—H21119.6
C3—C2—C1119.2 (5)C16—C21—H21119.6
C4—C3—C2120.6 (5)N3—C22—C16120.8 (4)
C4—C3—H3119.7N3—C22—H22119.6
C2—C3—H3119.7C16—C22—H22119.6
C5—C4—C3119.8 (4)O5—C23—N4123.5 (4)
C5—C4—H4120.1O5—C23—C24120.6 (4)
C3—C4—H4120.1N4—C23—C24115.9 (4)
C6—C5—C4121.2 (4)C29—C24—C25120.1 (4)
C6—C5—Br1119.4 (4)C29—C24—C23119.9 (4)
C4—C5—Br1119.4 (4)C25—C24—C23119.8 (4)
C5—C6—C1119.9 (4)C24—C25—C26119.5 (4)
C5—C6—H6120.0C24—C25—H25120.2
C1—C6—H6120.0C26—C25—H25120.2
N1—C7—C1119.4 (4)O6—C26—C27116.1 (4)
N1—C7—H7120.3O6—C26—C25124.1 (5)
C1—C7—H7120.3C27—C26—C25119.8 (5)
O2—C8—N2122.6 (4)C28—C27—C26118.8 (5)
O2—C8—C9122.1 (4)C28—C27—H27120.6
N2—C8—C9115.0 (4)C26—C27—H27120.6
C14—C9—C10119.9 (4)C27—C28—C29122.7 (5)
C14—C9—C8124.9 (4)C27—C28—H28118.7
C10—C9—C8115.2 (4)C29—C28—H28118.7
C11—C10—C9119.3 (4)C24—C29—C28119.1 (5)
C11—C10—H10120.4C24—C29—H29120.4
C9—C10—H10120.4C28—C29—H29120.4
O3—C11—C10124.0 (5)O6—C30—H30A109.5
O3—C11—C12117.0 (5)O6—C30—H30B109.5
C10—C11—C12119.0 (5)H30A—C30—H30B109.5
C13—C12—C11121.0 (5)O6—C30—H30C109.5
C13—C12—H12119.5H30A—C30—H30C109.5
C11—C12—H12119.5H30B—C30—H30C109.5
C12—C13—C14120.6 (5)O4—C31—H31A109.5
C12—C13—H13119.7O4—C31—H31B109.5
C14—C13—H13119.7H31A—C31—H31B109.5
C9—C14—C13120.0 (5)O4—C31—H31C109.5
C9—C14—H14120.0H31A—C31—H31C109.5
C13—C14—H14120.0H31B—C31—H31C109.5
O3—C15—H15A109.5O1—C32—H32A109.5
O3—C15—H15B109.5O1—C32—H32B109.5
H15A—C15—H15B109.5H32A—C32—H32B109.5
O3—C15—H15C109.5O1—C32—H32C109.5
H15A—C15—H15C109.5H32A—C32—H32C109.5
H15B—C15—H15C109.5H32B—C32—H32C109.5
C7—N1—N2—C8167.8 (4)C12—C13—C14—C90.8 (9)
C22—N3—N4—C23175.4 (4)C31—O4—C17—C181.9 (6)
C32—O1—C2—C34.8 (7)C31—O4—C17—C16177.7 (4)
C32—O1—C2—C1175.0 (4)C21—C16—C17—O4179.0 (4)
C6—C1—C2—O1179.4 (4)C22—C16—C17—O43.4 (6)
C7—C1—C2—O11.3 (6)C21—C16—C17—C180.6 (6)
C6—C1—C2—C30.4 (7)C22—C16—C17—C18177.0 (4)
C7—C1—C2—C3178.9 (4)O4—C17—C18—C19179.5 (4)
O1—C2—C3—C4179.0 (4)C16—C17—C18—C190.1 (7)
C1—C2—C3—C41.2 (7)C17—C18—C19—C200.9 (7)
C2—C3—C4—C51.8 (7)C18—C19—C20—C211.4 (7)
C3—C4—C5—C60.7 (7)C18—C19—C20—Br2178.5 (3)
C3—C4—C5—Br1178.7 (4)C19—C20—C21—C160.8 (7)
C4—C5—C6—C11.0 (7)Br2—C20—C21—C16179.1 (3)
Br1—C5—C6—C1179.7 (3)C17—C16—C21—C200.2 (6)
C2—C1—C6—C51.5 (7)C22—C16—C21—C20177.3 (4)
C7—C1—C6—C5177.8 (4)N4—N3—C22—C16177.8 (3)
N2—N1—C7—C1177.6 (4)C21—C16—C22—N318.1 (6)
C6—C1—C7—N118.0 (6)C17—C16—C22—N3164.4 (4)
C2—C1—C7—N1162.7 (4)N3—N4—C23—O50.1 (6)
N1—N2—C8—O23.9 (6)N3—N4—C23—C24177.8 (3)
N1—N2—C8—C9177.8 (3)O5—C23—C24—C2938.0 (6)
O2—C8—C9—C14143.8 (5)N4—C23—C24—C29144.0 (4)
N2—C8—C9—C1442.3 (6)O5—C23—C24—C25136.1 (5)
O2—C8—C9—C1036.7 (6)N4—C23—C24—C2541.9 (6)
N2—C8—C9—C10137.2 (4)C29—C24—C25—C260.9 (7)
C14—C9—C10—C113.5 (7)C23—C24—C25—C26173.2 (4)
C8—C9—C10—C11176.1 (4)C30—O6—C26—C27179.4 (5)
C15—O3—C11—C107.5 (8)C30—O6—C26—C250.7 (7)
C15—O3—C11—C12171.5 (5)C24—C25—C26—O6178.0 (4)
C9—C10—C11—O3176.1 (4)C24—C25—C26—C271.8 (7)
C9—C10—C11—C122.8 (7)O6—C26—C27—C28178.8 (5)
O3—C11—C12—C13178.7 (5)C25—C26—C27—C281.0 (8)
C10—C11—C12—C130.3 (8)C26—C27—C28—C290.8 (9)
C11—C12—C13—C141.5 (9)C25—C24—C29—C280.9 (7)
C10—C9—C14—C131.7 (8)C23—C24—C29—C28174.9 (5)
C8—C9—C14—C13177.8 (5)C27—C28—C29—C241.7 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (3)2.03 (3)2.872 (5)155 (5)
N4—H4A···O5ii0.90 (3)2.04 (3)2.868 (5)153 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H15BrN2O3
Mr363.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)29.063 (3), 10.934 (2), 9.913 (2)
β (°) 96.77 (3)
V3)3128.1 (9)
Z8
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.35 × 0.33 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.458, 0.505
No. of measured, independent and
observed [I > 2σ(I)] reflections
25535, 6785, 3586
Rint0.076
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.163, 1.03
No. of reflections6785
No. of parameters407
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.38

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (3)2.03 (3)2.872 (5)155 (5)
N4—H4A···O5ii0.90 (3)2.04 (3)2.868 (5)153 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

Financial support of this work was provided by the Research Foundation of Liaoning Province (grant No. 2008470).

References

First citationBan, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds