organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 3-[2,2-bis­­(eth­oxy­carbon­yl)­vinyl]-2-methyl-1H-indole-1-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 28 January 2009; accepted 16 March 2009; online 25 March 2009)

In the title compound, C22H27NO6, the indole ring system is planar and the ethoxy­carbonyl chains adopt extended conformations. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds occur, resulting in R22(16) dimers, which are inter­linked into a chain propagating along the a axis by ππ stacking inter­actions [centroid–centroid distance 3.5916 (9) Å].

Related literature

For general background, see: Hood et al. (1992[Hood, W. F., Gray, N. M., Dappen, M. S., Watson, G. B., Compton, R. P., Cordia, A., Lanthorn, T. H. & Mohanan, J. B. (1992). J. Pharmacol. Exp. Ther. 262, 654-660.]); Cram et al. (2001[Cram, E. J., Liu, B. D., Bjeldanes, L. F. & Firestone, G. L. (2001). J. Biol. Chem. 276, 22332-22340.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H27NO6

  • Mr = 401.45

  • Monoclinic, P 21 /c

  • a = 9.1933 (3) Å

  • b = 21.8495 (6) Å

  • c = 10.7676 (3) Å

  • β = 96.510 (2)°

  • V = 2148.93 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.982

  • 24241 measured reflections

  • 4766 independent reflections

  • 3534 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.134

  • S = 1.04

  • 4766 reflections

  • 286 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23C⋯O6i 0.96 2.55 3.503 (3) 171
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indole-carboxylate derivatives are known to be sensitive to N-methyl-D-aspartate (NMDA) antagonists and capable of reducing the damage associated with an ischemic insult in Mongolian gerbil hippocampal neurons (Hood et al., 1992). Also the naturally occurring indole compounds can induce cell cycle to arrest the human breast cancer cells (Cram et al., 2001).

The indole ring system is planar and both ethoxycarbonyl groups adopt extended conformation as can be seen from the torsion angles C17—O3—C18—C19 [169.7 (2)°], C18—O3—C17—C16 [-177.6 (2)°], C21A/C21B—O5—C20—C16 [-165.5 (4)° /170.9 (5)°] and C20—O5—C21A/C21B—C22A/C22B [-105.2 (6)° / -176.8 (5)°]. The sum of bond angles around N1 [359.96°] indicates that atom N1 exhibits sp2 hybridization (Beddoes et al., 1986). In the tert-butoxycarbonyl group, the three C—C bond lengths lie between 1.501 (3) Å and 1.507 (3) Å, while the three tert-butyl C—C—C angles are in the range 110.6 (2)°–113.1 (2)°, indicating a slight opening up from the ideal tetrahedral value.

In the crystal structure, the molecules form R22(16) dimers through paired C23—H23C···O6 hydrogen bonds (Bernstein et al., 1995). A π-π stacking interaction is observed between pyrrole rings of moloecules at (x, y, z) and (2 - x, -y, -z), with a centroid to centroid distance of 3.5916 (9) Å.

Related literature top

For general background, see: Hood et al. (1992); Cram et al. (2001). For hybridization, see: Beddoes et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of tert-butyl 3-formyl-2-methyl-1H-indole-1-carboxylate (4 g, 15.44 mmol) in dry benzene (120 ml), diethylmalonate (2.8 ml, 18.53 mmol), piperidine (6 drops) and acetic acid (3 drops) were added and refluxed in Dean-Stark apparatus for 48 h. Removal of solvent followed by recrystallization from methanol afforded the product as brown crystals.

Refinement top

The ethyl C atoms of the ethoxycarbonyl group are disordered over two positions (C21A/C22A and C21B/C22B) with refined occupancies of 0.58 (1) and 0.42 (1). The corresponding O—C and C—C bond distances involving the disordered atoms were restrained to 1.45 (1) Å and 1.53 (1) Å, respectively, and also their Uij parameters were restrained to an approximate isotropic behaviour. H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5(methyl)Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Both disorder components are shown.
[Figure 2] Fig. 2. The packing of the molecules viewed down c axis, showing C—H···O interactions (dashed lines).
tert-Butyl 3-[2,2-bis(ethoxycarbonyl)vinyl]-2-methyl- 1H-indole-1-carboxylate top
Crystal data top
C22H27NO6F(000) = 856
Mr = 401.45Dx = 1.241 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4766 reflections
a = 9.1933 (3) Åθ = 2.1–27.2°
b = 21.8495 (6) ŵ = 0.09 mm1
c = 10.7676 (3) ÅT = 293 K
β = 96.510 (2)°Block, brown
V = 2148.93 (11) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4766 independent reflections
Radiation source: fine-focus sealed tube3534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 27.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.978, Tmax = 0.982k = 2728
24241 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.6467P]
where P = (Fo2 + 2Fc2)/3
4766 reflections(Δ/σ)max = 0.001
286 parametersΔρmax = 0.25 e Å3
28 restraintsΔρmin = 0.28 e Å3
Crystal data top
C22H27NO6V = 2148.93 (11) Å3
Mr = 401.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1933 (3) ŵ = 0.09 mm1
b = 21.8495 (6) ÅT = 293 K
c = 10.7676 (3) Å0.25 × 0.20 × 0.20 mm
β = 96.510 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4766 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3534 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.030
24241 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04928 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
4766 reflectionsΔρmin = 0.28 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.11345 (14)0.63504 (5)0.68637 (11)0.0507 (3)
O20.00198 (17)0.68868 (6)0.52523 (12)0.0639 (4)
O30.39872 (13)0.51263 (5)0.24128 (12)0.0508 (3)
O40.34111 (19)0.43222 (8)0.11765 (15)0.0797 (5)
O50.3720 (2)0.33528 (7)0.4564 (2)0.0942 (6)
O60.49107 (19)0.34337 (7)0.2910 (2)0.0947 (6)
N10.09171 (14)0.59345 (5)0.49600 (12)0.0370 (3)
C20.03282 (17)0.58731 (7)0.37025 (14)0.0378 (3)
C30.06844 (19)0.62313 (8)0.29745 (16)0.0482 (4)
H30.10610.65870.32870.058*
C40.1107 (2)0.60389 (9)0.17750 (17)0.0572 (5)
H40.17750.62730.12630.069*
C50.0566 (2)0.55057 (10)0.13070 (16)0.0571 (5)
H50.08770.53870.04900.069*
C60.0423 (2)0.51497 (9)0.20315 (16)0.0491 (4)
H60.07760.47900.17150.059*
C70.08915 (17)0.53353 (7)0.32463 (14)0.0386 (3)
C80.18327 (17)0.50633 (7)0.42574 (15)0.0381 (3)
C90.18175 (16)0.54260 (7)0.52819 (14)0.0368 (3)
C100.06355 (18)0.64434 (7)0.56895 (15)0.0425 (4)
C110.1044 (2)0.68359 (8)0.78201 (17)0.0514 (4)
C120.1872 (3)0.65426 (12)0.89548 (19)0.0792 (7)
H12A0.13990.61670.91400.119*
H12B0.18850.68150.96550.119*
H12C0.28570.64590.87920.119*
C130.1810 (2)0.74056 (9)0.7464 (2)0.0657 (5)
H13A0.27680.73020.72560.099*
H13B0.18970.76870.81530.099*
H13C0.12560.75920.67540.099*
C140.0535 (2)0.69411 (10)0.7993 (2)0.0672 (6)
H14A0.10320.71200.72480.101*
H14B0.05950.72130.86860.101*
H14C0.09860.65580.81570.101*
C150.26345 (17)0.44895 (7)0.42693 (16)0.0431 (4)
H150.26550.42630.50020.052*
C160.33461 (18)0.42406 (7)0.33802 (17)0.0465 (4)
C170.35749 (19)0.45525 (8)0.21940 (18)0.0513 (4)
C180.4202 (3)0.55038 (11)0.1348 (2)0.0752 (6)
H18A0.33630.54740.07180.090*
H18B0.50670.53730.09810.090*
C190.4382 (4)0.61385 (13)0.1811 (3)0.1133 (11)
H19A0.34980.62700.21280.170*
H19B0.45850.64020.11390.170*
H19C0.51790.61560.24680.170*
C200.4073 (2)0.36390 (8)0.3563 (2)0.0626 (5)
C21A0.4535 (8)0.2800 (2)0.5168 (11)0.093 (2)0.580 (10)
H21A0.54730.27410.48530.111*0.580 (10)
H21B0.46840.28360.60710.111*0.580 (10)
C22A0.3500 (8)0.2300 (3)0.4765 (13)0.089 (3)0.420 (10)
H22A0.38970.19170.50810.134*0.420 (10)
H22B0.33500.22860.38690.134*0.420 (10)
H22C0.25820.23740.50840.134*0.420 (10)
C21B0.4319 (10)0.2723 (3)0.4519 (9)0.0645 (19)0.420 (10)
H21C0.39360.25110.37600.077*0.420 (10)
H21D0.53800.27240.45910.077*0.420 (10)
C22B0.3768 (8)0.2453 (3)0.5638 (9)0.096 (2)0.580 (10)
H22D0.40680.20330.57190.144*0.580 (10)
H22E0.27180.24750.55520.144*0.580 (10)
H22F0.41600.26750.63690.144*0.580 (10)
C230.26713 (19)0.53322 (8)0.65178 (16)0.0478 (4)
H23A0.32830.49780.64870.072*
H23B0.20140.52730.71390.072*
H23C0.32710.56850.67290.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0686 (8)0.0437 (6)0.0384 (6)0.0115 (6)0.0001 (6)0.0066 (5)
O20.0922 (10)0.0455 (7)0.0517 (8)0.0258 (7)0.0018 (7)0.0023 (6)
O30.0479 (7)0.0487 (7)0.0557 (8)0.0009 (5)0.0059 (6)0.0031 (5)
O40.0929 (12)0.0852 (11)0.0638 (9)0.0061 (9)0.0205 (8)0.0259 (8)
O50.0943 (12)0.0479 (8)0.1461 (17)0.0286 (8)0.0386 (12)0.0268 (10)
O60.0797 (11)0.0628 (10)0.1485 (17)0.0245 (8)0.0437 (11)0.0134 (10)
N10.0403 (7)0.0349 (6)0.0353 (7)0.0041 (5)0.0019 (5)0.0001 (5)
C20.0400 (8)0.0386 (8)0.0349 (8)0.0015 (6)0.0047 (6)0.0018 (6)
C30.0525 (10)0.0458 (9)0.0454 (10)0.0110 (7)0.0022 (8)0.0056 (7)
C40.0592 (11)0.0679 (12)0.0421 (10)0.0134 (9)0.0045 (8)0.0110 (8)
C50.0597 (11)0.0756 (13)0.0348 (9)0.0058 (10)0.0003 (8)0.0023 (8)
C60.0504 (10)0.0566 (10)0.0406 (9)0.0053 (8)0.0058 (7)0.0074 (7)
C70.0378 (8)0.0409 (8)0.0375 (8)0.0012 (6)0.0058 (6)0.0008 (6)
C80.0361 (8)0.0367 (8)0.0416 (9)0.0019 (6)0.0050 (6)0.0006 (6)
C90.0337 (7)0.0344 (7)0.0419 (8)0.0017 (6)0.0027 (6)0.0028 (6)
C100.0488 (9)0.0369 (8)0.0417 (9)0.0052 (7)0.0043 (7)0.0016 (7)
C110.0596 (11)0.0500 (10)0.0446 (10)0.0031 (8)0.0055 (8)0.0149 (7)
C120.1044 (18)0.0845 (16)0.0454 (11)0.0108 (14)0.0056 (11)0.0163 (11)
C130.0655 (13)0.0569 (11)0.0758 (14)0.0066 (9)0.0130 (11)0.0185 (10)
C140.0648 (13)0.0679 (13)0.0716 (14)0.0075 (10)0.0198 (11)0.0251 (10)
C150.0403 (8)0.0369 (8)0.0517 (10)0.0015 (6)0.0037 (7)0.0014 (7)
C160.0400 (9)0.0372 (8)0.0625 (11)0.0010 (7)0.0070 (8)0.0074 (7)
C170.0416 (9)0.0527 (10)0.0606 (11)0.0030 (8)0.0098 (8)0.0116 (9)
C180.0777 (15)0.0826 (16)0.0658 (14)0.0049 (12)0.0107 (11)0.0210 (12)
C190.147 (3)0.0703 (17)0.117 (2)0.0217 (17)0.009 (2)0.0326 (16)
C200.0486 (10)0.0378 (9)0.1030 (17)0.0015 (8)0.0151 (11)0.0059 (10)
C21A0.107 (4)0.057 (3)0.112 (5)0.024 (3)0.001 (4)0.002 (4)
C22A0.094 (4)0.072 (4)0.101 (6)0.004 (3)0.008 (4)0.009 (4)
C21B0.090 (4)0.038 (3)0.067 (4)0.022 (3)0.014 (3)0.011 (3)
C22B0.117 (4)0.073 (3)0.102 (5)0.028 (3)0.031 (4)0.037 (3)
C230.0466 (9)0.0463 (9)0.0477 (10)0.0074 (7)0.0065 (7)0.0002 (7)
Geometric parameters (Å, º) top
O1—C101.311 (2)C12—H12C0.96
O1—C111.4874 (19)C13—H13A0.96
O2—C101.1917 (19)C13—H13B0.96
O3—C171.323 (2)C13—H13C0.96
O3—C181.444 (2)C14—H14A0.96
O4—C171.200 (2)C14—H14B0.96
O5—C201.318 (3)C14—H14C0.96
O5—C21B1.484 (6)C15—C161.335 (2)
O5—C21A1.528 (6)C15—H150.93
O6—C201.188 (2)C16—C201.478 (2)
N1—C101.402 (2)C16—C171.484 (3)
N1—C91.4053 (19)C18—C191.477 (4)
N1—C21.4065 (19)C18—H18A0.97
C2—C31.389 (2)C18—H18B0.97
C2—C71.396 (2)C19—H19A0.96
C3—C41.372 (3)C19—H19B0.96
C3—H30.93C19—H19C0.96
C4—C51.384 (3)C21A—C22A1.481 (7)
C4—H40.93C21A—H21A0.97
C5—C61.371 (3)C21A—H21B0.97
C5—H50.93C22A—H22A0.96
C6—C71.390 (2)C22A—H22B0.96
C6—H60.93C22A—H22C0.96
C7—C81.440 (2)C21B—C22B1.482 (6)
C8—C91.360 (2)C21B—H21C0.97
C8—C151.454 (2)C21B—H21D0.97
C9—C231.481 (2)C22B—H22D0.96
C11—C131.501 (3)C22B—H22E0.96
C11—C141.502 (3)C22B—H22F0.96
C11—C121.507 (3)C23—H23A0.96
C12—H12A0.96C23—H23B0.96
C12—H12B0.96C23—H23C0.96
C10—O1—C11121.09 (13)H14A—C14—H14C109.5
C17—O3—C18117.53 (16)H14B—C14—H14C109.5
C20—O5—C21B106.6 (3)C16—C15—C8129.37 (16)
C20—O5—C21A124.6 (4)C16—C15—H15115.3
C10—N1—C9129.03 (13)C8—C15—H15115.3
C10—N1—C2122.65 (12)C15—C16—C20121.19 (18)
C9—N1—C2108.28 (12)C15—C16—C17123.98 (15)
C3—C2—C7121.85 (15)C20—C16—C17114.67 (16)
C3—C2—N1130.54 (15)O4—C17—O3124.32 (19)
C7—C2—N1107.54 (13)O4—C17—C16125.33 (18)
C4—C3—C2117.33 (16)O3—C17—C16110.35 (15)
C4—C3—H3121.3O3—C18—C19106.8 (2)
C2—C3—H3121.3O3—C18—H18A110.4
C3—C4—C5121.69 (17)C19—C18—H18A110.4
C3—C4—H4119.2O3—C18—H18B110.4
C5—C4—H4119.2C19—C18—H18B110.4
C6—C5—C4120.87 (17)H18A—C18—H18B108.6
C6—C5—H5119.6C18—C19—H19A109.5
C4—C5—H5119.6C18—C19—H19B109.5
C5—C6—C7118.98 (17)H19A—C19—H19B109.5
C5—C6—H6120.5C18—C19—H19C109.5
C7—C6—H6120.5H19A—C19—H19C109.5
C6—C7—C2119.28 (15)H19B—C19—H19C109.5
C6—C7—C8133.34 (15)O6—C20—O5122.79 (19)
C2—C7—C8107.25 (13)O6—C20—C16124.8 (2)
C9—C8—C7108.20 (13)O5—C20—C16112.41 (17)
C9—C8—C15123.19 (14)C22A—C21A—O5101.0 (5)
C7—C8—C15128.55 (15)C22A—C21A—H21A111.6
C8—C9—N1108.70 (13)O5—C21A—H21A111.6
C8—C9—C23126.54 (14)C22A—C21A—H21B111.6
N1—C9—C23124.65 (14)O5—C21A—H21B111.6
O2—C10—O1127.26 (15)H21A—C21A—H21B109.4
O2—C10—N1122.20 (15)C21A—C22A—H22A109.5
O1—C10—N1110.53 (13)C21A—C22A—H22B109.5
O1—C11—C13110.46 (15)H22A—C22A—H22B109.5
O1—C11—C14109.02 (15)C21A—C22A—H22C109.5
C13—C11—C14113.14 (17)H22A—C22A—H22C109.5
O1—C11—C12101.26 (14)H22B—C22A—H22C109.5
C13—C11—C12110.58 (18)C22B—C21B—O5100.4 (4)
C14—C11—C12111.74 (19)C22B—C21B—H21C111.7
C11—C12—H12A109.5O5—C21B—H21C111.7
C11—C12—H12B109.5C22B—C21B—H21D111.7
H12A—C12—H12B109.5O5—C21B—H21D111.7
C11—C12—H12C109.5H21C—C21B—H21D109.5
H12A—C12—H12C109.5C21B—C22B—H22D109.5
H12B—C12—H12C109.5C21B—C22B—H22E109.5
C11—C13—H13A109.5H22D—C22B—H22E109.5
C11—C13—H13B109.5C21B—C22B—H22F109.5
H13A—C13—H13B109.5H22D—C22B—H22F109.5
C11—C13—H13C109.5H22E—C22B—H22F109.5
H13A—C13—H13C109.5C9—C23—H23A109.5
H13B—C13—H13C109.5C9—C23—H23B109.5
C11—C14—H14A109.5H23A—C23—H23B109.5
C11—C14—H14B109.5C9—C23—H23C109.5
H14A—C14—H14B109.5H23A—C23—H23C109.5
C11—C14—H14C109.5H23B—C23—H23C109.5
C10—N1—C2—C36.4 (3)C2—N1—C10—O28.8 (3)
C9—N1—C2—C3175.54 (17)C9—N1—C10—O111.4 (2)
C10—N1—C2—C7176.75 (14)C2—N1—C10—O1171.02 (14)
C9—N1—C2—C71.29 (16)C10—O1—C11—C1357.4 (2)
C7—C2—C3—C40.5 (3)C10—O1—C11—C1467.5 (2)
N1—C2—C3—C4176.98 (17)C10—O1—C11—C12174.57 (17)
C2—C3—C4—C50.8 (3)C9—C8—C15—C16143.93 (18)
C3—C4—C5—C60.2 (3)C7—C8—C15—C1639.3 (3)
C4—C5—C6—C70.7 (3)C8—C15—C16—C20178.54 (16)
C5—C6—C7—C20.9 (3)C8—C15—C16—C176.3 (3)
C5—C6—C7—C8176.11 (18)C18—O3—C17—O42.3 (3)
C3—C2—C7—C60.3 (2)C18—O3—C17—C16177.62 (16)
N1—C2—C7—C6176.85 (14)C15—C16—C17—O4135.4 (2)
C3—C2—C7—C8176.65 (15)C20—C16—C17—O449.2 (3)
N1—C2—C7—C80.51 (17)C15—C16—C17—O344.5 (2)
C6—C7—C8—C9175.13 (18)C20—C16—C17—O3130.88 (16)
C2—C7—C8—C90.47 (18)C17—O3—C18—C19169.7 (2)
C6—C7—C8—C152.0 (3)C21B—O5—C20—O610.6 (5)
C2—C7—C8—C15177.64 (15)C21A—O5—C20—O613.0 (5)
C7—C8—C9—N11.27 (17)C21B—O5—C20—C16170.9 (5)
C15—C8—C9—N1178.63 (14)C21A—O5—C20—C16165.5 (4)
C7—C8—C9—C23177.64 (15)C15—C16—C20—O6167.6 (2)
C15—C8—C9—C235.0 (3)C17—C16—C20—O68.0 (3)
C10—N1—C9—C8176.27 (15)C15—C16—C20—O510.9 (3)
C2—N1—C9—C81.60 (17)C17—C16—C20—O5173.58 (18)
C10—N1—C9—C230.2 (2)C20—O5—C21A—C22A105.2 (6)
C2—N1—C9—C23178.06 (15)C21B—O5—C21A—C22A49.7 (9)
C11—O1—C10—O23.5 (3)C20—O5—C21B—C22B176.8 (5)
C11—O1—C10—N1176.67 (14)C21A—O5—C21B—C22B48.2 (9)
C9—N1—C10—O2168.77 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23C···O6i0.962.553.503 (3)171
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H27NO6
Mr401.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.1933 (3), 21.8495 (6), 10.7676 (3)
β (°) 96.510 (2)
V3)2148.93 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
24241, 4766, 3534
Rint0.030
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.04
No. of reflections4766
No. of parameters286
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23C···O6i0.962.553.503 (3)171
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

MT thanks Dr Babu Varghese, SAIF, IIT–Madras, India, for his help with the data collection.

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCram, E. J., Liu, B. D., Bjeldanes, L. F. & Firestone, G. L. (2001). J. Biol. Chem. 276, 22332–22340.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHood, W. F., Gray, N. M., Dappen, M. S., Watson, G. B., Compton, R. P., Cordia, A., Lanthorn, T. H. & Mohanan, J. B. (1992). J. Pharmacol. Exp. Ther. 262, 654–660.  PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds