organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Meth­oxy­benzaldehyde thio­semi­carbazone

aDepartment of Light Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn

(Received 10 March 2009; accepted 20 March 2009; online 28 March 2009)

The title compound, C9H11N3OS, was prepared by the reaction of 3-methoxy­benzaldehyde and thio­semicarbazide. The benzyl­idene ring and the thio­semicarbazone fragment are slightly twisted, making a dihedral angle of 14.1 (1)°. A weak intra­molecular N—H⋯N hydrogen bond may influence the conformation of the mol­ecule. Inter­molecular N—H⋯S hydrogen bonds build up a three-dimensional network.

Related literature

For a general background to thio­semicarbazone compounds, see: Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Tarafder et al. (2000[Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.]); Ferrari et al. (2000[Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89-97.]); Deschamps et al. (2003[Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366-7368.]); Maccioni et al. (2003[Maccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco, 58, 951-959.]); Chimenti et al.(2007[Chimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707-712.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3OS

  • Mr = 209.27

  • Monoclinic, P 21 /c

  • a = 11.814 (2) Å

  • b = 5.6760 (11) Å

  • c = 15.248 (3) Å

  • β = 90.29 (3)°

  • V = 1022.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.908, Tmax = 0.969

  • 1946 measured reflections

  • 1852 independent reflections

  • 1494 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.06

  • 1852 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.57 3.370 (2) 156
N3—H3B⋯S1ii 0.86 2.57 3.411 (2) 166
N3—H3A⋯N1 0.86 2.25 2.611 (3) 105
Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones constitute an important class of N,S donor ligands due to their propensity to react with a wide range of metals (Casas et al., 2000). Thiosemicarbazones exhibit various biological activities and have therefore attracted considerable pharmaceutical interest (Maccioni et al., 2003; Ferrari et al., 2000). They have been evaluated as antiviral, antibacterial and anticancer therapeutics. Thiosemicarbazones belong to a large group of thiourea derivatives, whose biological activities are a function of parent aldehyde or ketone moiety (Chimenti et al., 2007). Schiff bases show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and so have biochemical and pharmacological applications. We here report the crystal structure of the title compound (I).

The sulfur atom and the hydrazine nitrogen N1 are in trans position with respect to the C9–N2 bond. This conformation may be induced by the weak intramolecular N-H···N hydrogen bond (Fig. 1, Table 1). All bond lengths are within normal ranges (Allen et al., 1987).

At first glance the molecule is roughly planar with the largest deviation from the mean plane being -0.272 (3) Å at N3, however the benzaldehyde ring and the thiosemicarbazone fragment are twisted with respect to each other making a dihedral angle of 14.1 (1)°.

The molecules are connected by intermolecular N—H···S hydrogen bonds which build up a three dimensional network (Table 1, Fig.2).

Related literature top

For a general background to thiosemicarbazone compounds, see: Casas et al. (2000); Tarafder et al. (2000); Ferrari et al. (2000); Deschamps et al. (2003); Maccioni et al. (2003); Chimenti et al.(2007). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 3-methoxybenzaldehyde (1.36 g, 0.01 mol) and hydrazinecarbothioamide (0.91 g, 0.01 mol) in 20 ml of absolute methanol was refluxed for about 3 h. On cooling, the solid separated was filtered and recrystallized from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate. 1H NMR (DMSO, δ, p.p.m.) 11.39 (s, 1 H), 8.17 (s, 1 H), 8.02 (s,2 H), 7.42 (m, 1 H), 7.30 (t, 2 H), 6.99 (t,1 H), 3.79 (t, 3 H).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for C(aromatic) and N atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids. H atoms are represented as smal sphere of arbitrary radii. Intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the N-H···S hydrogen bonds network. H atoms not involved in hydrogen bonding have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) -x+1, y-1/2, -z+1/2]
3-Methoxybenzaldehyde thiosemicarbazone top
Crystal data top
C9H11N3OSF(000) = 440
Mr = 209.27Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 11.814 (2) Åθ = 1–25°
b = 5.6760 (11) ŵ = 0.29 mm1
c = 15.248 (3) ÅT = 293 K
β = 90.29 (3)°Block, colorless
V = 1022.5 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1494 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 140
Absorption correction: ψ scan
(North et al., 1968)
k = 06
Tmin = 0.908, Tmax = 0.969l = 1818
1946 measured reflections3 standard reflections every 200 reflections
1852 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.3815P]
where P = (Fo2 + 2Fc2)/3
1852 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C9H11N3OSV = 1022.5 (3) Å3
Mr = 209.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.814 (2) ŵ = 0.29 mm1
b = 5.6760 (11) ÅT = 293 K
c = 15.248 (3) Å0.30 × 0.20 × 0.10 mm
β = 90.29 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1494 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.908, Tmax = 0.9693 standard reflections every 200 reflections
1946 measured reflections intensity decay: 9%
1852 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
1852 reflectionsΔρmin = 0.26 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51511 (6)1.47619 (10)0.35880 (3)0.0442 (2)
O10.85492 (14)0.6407 (3)0.83956 (9)0.0496 (5)
N10.66878 (15)1.0213 (3)0.50804 (11)0.0369 (4)
N20.60984 (16)1.2149 (3)0.47967 (11)0.0407 (5)
H20.59361.32680.51550.049*
N30.59915 (18)1.0451 (4)0.34546 (12)0.0497 (5)
H3A0.63240.92370.36740.060*
H3B0.58001.04630.29100.060*
C10.9085 (2)0.4449 (6)0.88050 (16)0.0614 (8)
H1A0.98620.43770.86270.092*
H1B0.87060.30240.86340.092*
H1C0.90490.46240.94300.092*
C20.84356 (18)0.6327 (4)0.75008 (14)0.0383 (5)
C30.77906 (17)0.8120 (4)0.71427 (13)0.0366 (5)
H30.74790.92640.75050.044*
C40.76070 (17)0.8221 (4)0.62447 (13)0.0350 (5)
C50.8097 (2)0.6510 (4)0.57024 (14)0.0428 (6)
H50.79820.65660.50990.051*
C60.8741 (2)0.4764 (4)0.60621 (16)0.0503 (6)
H60.90710.36420.57000.060*
C70.8914 (2)0.4638 (4)0.69715 (16)0.0472 (6)
H70.93460.34300.72140.057*
C80.69256 (18)1.0136 (4)0.58932 (13)0.0379 (5)
H80.66631.13110.62650.045*
C90.57769 (17)1.2279 (4)0.39499 (13)0.0332 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0643 (4)0.0374 (3)0.0309 (3)0.0090 (3)0.0081 (3)0.0035 (2)
O10.0534 (10)0.0621 (12)0.0333 (8)0.0106 (9)0.0062 (7)0.0109 (8)
N10.0429 (10)0.0363 (10)0.0315 (9)0.0058 (9)0.0045 (8)0.0024 (8)
N20.0555 (12)0.0378 (11)0.0286 (9)0.0118 (9)0.0091 (8)0.0020 (8)
N30.0732 (14)0.0442 (12)0.0315 (9)0.0164 (11)0.0128 (9)0.0056 (9)
C10.0631 (16)0.077 (2)0.0444 (14)0.0194 (15)0.0057 (12)0.0225 (14)
C20.0335 (11)0.0471 (14)0.0343 (11)0.0031 (10)0.0041 (9)0.0072 (10)
C30.0338 (11)0.0429 (13)0.0331 (11)0.0020 (10)0.0002 (9)0.0024 (10)
C40.0331 (11)0.0380 (12)0.0340 (11)0.0035 (10)0.0043 (9)0.0045 (10)
C50.0526 (14)0.0413 (14)0.0346 (11)0.0013 (11)0.0061 (10)0.0020 (10)
C60.0622 (16)0.0432 (14)0.0454 (13)0.0109 (12)0.0051 (12)0.0084 (11)
C70.0517 (14)0.0401 (13)0.0497 (14)0.0076 (11)0.0091 (11)0.0061 (11)
C80.0389 (11)0.0439 (13)0.0309 (11)0.0039 (10)0.0012 (9)0.0002 (10)
C90.0372 (11)0.0357 (12)0.0266 (10)0.0032 (10)0.0024 (8)0.0015 (9)
Geometric parameters (Å, º) top
S1—C91.683 (2)C2—C71.377 (3)
O1—C21.371 (2)C2—C31.382 (3)
O1—C11.422 (3)C3—C41.386 (3)
N1—C81.270 (3)C3—H30.9300
N1—N21.370 (2)C4—C51.402 (3)
N2—C91.346 (3)C4—C81.454 (3)
N2—H20.8600C5—C61.363 (3)
N3—C91.309 (3)C5—H50.9300
N3—H3A0.8600C6—C71.402 (3)
N3—H3B0.8600C6—H60.9300
C1—H1A0.9600C7—H70.9300
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600
C2—O1—C1116.9 (2)C4—C3—H3119.9
C8—N1—N2116.44 (18)C3—C4—C5119.4 (2)
C9—N2—N1119.16 (18)C3—C4—C8118.6 (2)
C9—N2—H2120.4C5—C4—C8122.00 (19)
N1—N2—H2120.4C6—C5—C4119.8 (2)
C9—N3—H3A120.0C6—C5—H5120.1
C9—N3—H3B120.0C4—C5—H5120.1
H3A—N3—H3B120.0C5—C6—C7120.9 (2)
O1—C1—H1A109.5C5—C6—H6119.6
O1—C1—H1B109.5C7—C6—H6119.6
H1A—C1—H1B109.5C2—C7—C6119.1 (2)
O1—C1—H1C109.5C2—C7—H7120.5
H1A—C1—H1C109.5C6—C7—H7120.5
H1B—C1—H1C109.5N1—C8—C4120.3 (2)
O1—C2—C7124.6 (2)N1—C8—H8119.8
O1—C2—C3114.8 (2)C4—C8—H8119.8
C7—C2—C3120.6 (2)N3—C9—N2117.1 (2)
C2—C3—C4120.2 (2)N3—C9—S1124.11 (16)
C2—C3—H3119.9N2—C9—S1118.78 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.573.370 (2)156
N3—H3B···S1ii0.862.573.411 (2)166
N3—H3A···N10.862.252.611 (3)105
Symmetry codes: (i) x+1, y+3, z+1; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H11N3OS
Mr209.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.814 (2), 5.6760 (11), 15.248 (3)
β (°) 90.29 (3)
V3)1022.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.908, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
1946, 1852, 1494
Rint0.017
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.06
No. of reflections1852
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.573.370 (2)155.5
N3—H3B···S1ii0.862.573.411 (2)165.6
N3—H3A···N10.862.252.611 (3)104.9
Symmetry codes: (i) x+1, y+3, z+1; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationChimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707–712.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDeschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFerrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMaccioni, E., Cardia, M. C., Distinto, S., Bonsignore, L. & De Logu, A. (2003). Farmaco, 58, 951–959.  CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds