organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

O,O′-Di­ethyl {(Z)-[(2-chloro­phen­yl)(cyano)methyl­ene]amino­­oxy}thio­phospho­nate

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China, and bDepartment of Medicinal Chemistry, Jiangsu Provincial Institute of Materia Medica, Nanjing University of Technology, No. 26 Majia Street, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wangpuhai@hotmail.com

(Received 29 December 2008; accepted 25 February 2009; online 6 March 2009)

The title mol­ecule, C12H14ClN2O3PS, has a cis configuration with respect to the C=N bond. Inter­molecular C—H⋯O inter­actions inter­connect the mol­ecules into chains along the c axis. The chains are further connected into a two-dimensional network parallel to the bc plane by weak ππ inter­actions between adjacent aromatic rings (centroid–centroid distance = 3.772Å).

Related literature

For the insectidal activity of the title compound, see: Hudson & Obudho (1972[Hudson, J. E. & Obudho, W. O. (1972). Mosq. News, 32, 37-46.]); Le Berre et al. (1972[Le Berre, R., Escaffre, H., Pendriez, B., Grebaut, S. & Pengalet, P. (1972). Control of Simulium damnosum, the Vector of Human Onchocerciasis in West Africa. II. Test by Classic Application of New Insecticides and New Formulations. Bobo-Dioulasso, Upper Volta:]). For its preparation and reactivity, see: Walter & Clifton (1973[Walter, A. M. & Clifton, E. M. (1973). J. Agric. Food Chem. 21, 762-763.]); Wang et al. (1996[Wang, P. H., Wang, R., Dai, J. R., Wu, X. Q. & Xu, J. (1996). Acta Pharm. Sin. 31, 918-924.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14ClN2O3PS

  • Mr = 332.73

  • Monoclinic, P 21 /c

  • a = 10.518 (2) Å

  • b = 20.215 (4) Å

  • c = 7.9650 (16) Å

  • β = 110.11 (3)°

  • V = 1590.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.870, Tmax = 0.954

  • 2889 measured reflections

  • 2889 independent reflections

  • 1981 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.192

  • S = 1.09

  • 2889 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.97 2.58 3.396 (6) 142
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

O,O-diethyl-O-(2-chlorophenylglyoxylonitrile oximino)thiophosphate (Chlorphoxim) was shown to be efficient against adult mosquitoes as well as agricultural insects (Hudson et al., 1972). It was also successfully tested against the larvae of the blackfly (Simulium damnosum), the insect vector of human onchocerciasis in West Africa (Le Berre et al., 1972). The title substance combined with niclosamide exhibited significant molluscicidal synergism against snails (Oncomelania hupensis) (Wang et al., 1996). The synthesis of the title compound has been described by Walter et al. (1973). As a part of our own studies in this area, we report here its crystal structure.

The title molecule shows a cis configuration (Fig. 1) on the CN bond. The molecules are linked into chains along the axis c via weak intermolecular C—H···O interactions (Fig. 2, Tab. 1). The chains are further connected into a two-dimensional network via weak π-π electron interactions between the adjacent phenyl rings: The centroid-centroid distance is 3.772 Å.

Related literature top

For the insectidal activity of the title compound, see: Hudson & Obudho (1972); Le Berre et al. (1972). For its preparation and reactivity, see: Walter & Clifton (1973); Wang et al. (1996).

Experimental top

Sodium, 2.30 g (0.1 mol), reacted with 50 ml of absolute ethanol in order to get sodium ethoxide solution. 15.20 g (0.1 mol) of 2-chlorophenylacetonitrile, was added dropwise to the cooled sodium ethoxide (about 278 K) and then 10.30 g (0.1 mol) of butyl nitrite was added dropwise. The mixture was stirred at room temperature for 1 h under reduced pressure until the volume was reduced to 30 ml. Then 50 ml of ethyl ether was added, and the precipitated solid was filtered off and washed with ethyl ether to afford sodium 2-chlorophenylglyoxylonitrile oxime (11.3 g, 56%). Diethyl phosphorochloridothionate, 5.70 g (0.03 mol), was added dropwise to 6.00 g (0.03 mol) of sodium 2-chlorophenylglyoxylonitrile oxime, which was suspended in 20 ml of dry acetone. The mixture was stirred for 1 h. Thin layered chromatography using petroleum ether and ethyl acetate as expanding solvent indicated just one point. The mixture was then concentrated under reduced pressure and 50 ml of water was added to the residue. The precipitated solid that had appeared was filtered off, washed thoroughly with absolute ethanol, dried and recrystallized from petroleum ether to afford the title compound (8.9 g, yield 89%) as a white crystalline solid. The title crystals suitable for X-ray diffraction were obtained by slow evaporation of the acetone solution. The average size of the block-like crystals is 0.2 × 0.2 × 0.2 mm.

Refinement top

The aryl and methylene H atoms were situated into idealized positions though the aryl H atoms were clearly discernible in the difference electron density map. After the refinement with these H atoms whose parameters were fully constrained had converged the electron density map revealed that the methyl H atoms were not disordered. They were also situated into the idealized positions and constrained. C—Hmethyl, C—Hmethylene, C—Haryl = 0.96, 0.97, 0.93 Å, UisoHmethyl=1.5UeqCmethyl, UisoHmethylene=1.2UeqCmethylene, UisoHaryl=1.2UeqCaryl.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title structure. The dashed lines represent weak C—H···O interactions.
O,O'-Diethyl {(Z)-[(2-chlorophenyl)(cyano)methylene]aminooxy}thiophosphonate top
Crystal data top
C12H14ClN2O3PSF(000) = 688
Mr = 332.73Dx = 1.390 Mg m3
Monoclinic, P21/cMelting point: 341.5 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.518 (2) ÅCell parameters from 25 reflections
b = 20.215 (4) Åθ = 9.0–13.0°
c = 7.9650 (16) ŵ = 0.48 mm1
β = 110.11 (3)°T = 293 K
V = 1590.3 (6) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1981 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 1211
Absorption correction: ψ scan
(North et al., 1968)
k = 024
Tmin = 0.870, Tmax = 0.954l = 09
2889 measured reflections3 standard reflections every 120 min
2889 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: difference Fourier map
wR(F2) = 0.192H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0957P)2 + 1.1623P]
where P = (Fo2 + 2Fc2)/3
2889 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C12H14ClN2O3PSV = 1590.3 (6) Å3
Mr = 332.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.518 (2) ŵ = 0.48 mm1
b = 20.215 (4) ÅT = 293 K
c = 7.9650 (16) Å0.30 × 0.20 × 0.10 mm
β = 110.11 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1981 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.870, Tmax = 0.9543 standard reflections every 120 min
2889 measured reflections intensity decay: 1.0%
2889 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.192H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
2889 reflectionsΔρmin = 0.39 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.9833 (2)0.10567 (10)1.4318 (2)0.1103 (7)
S0.44401 (12)0.05415 (6)0.77933 (17)0.0620 (4)
P0.49482 (11)0.14026 (6)0.73194 (14)0.0468 (3)
O10.3963 (3)0.19852 (15)0.7185 (4)0.0562 (8)
O20.5248 (4)0.15378 (16)0.5556 (4)0.0687 (9)
O30.6273 (3)0.16956 (14)0.8892 (4)0.0518 (7)
N10.7388 (3)0.12634 (16)0.9243 (4)0.0477 (8)
N20.8474 (5)0.2615 (3)1.2012 (8)0.0939 (16)
C10.2127 (6)0.2550 (3)0.7678 (8)0.0898 (18)
H1B0.16640.26240.85110.135*
H1C0.15010.23760.65830.135*
H1D0.24930.29600.74410.135*
C20.3231 (5)0.2074 (3)0.8440 (7)0.0690 (13)
H2A0.38430.22360.95750.083*
H2B0.28640.16530.86450.083*
C30.5814 (7)0.1315 (3)0.2996 (7)0.0884 (18)
H3A0.62150.09960.24370.133*
H3B0.62900.17270.31180.133*
H3C0.48810.13790.22730.133*
C40.5897 (7)0.1079 (3)0.4736 (8)0.0847 (17)
H4A0.54600.06500.46230.102*
H4B0.68390.10270.54820.102*
C50.8423 (4)0.2119 (2)1.1322 (6)0.0599 (12)
C60.8431 (4)0.14942 (19)1.0451 (5)0.0436 (9)
C70.9702 (4)0.1113 (2)1.0871 (6)0.0475 (9)
C81.0192 (5)0.0965 (2)0.9514 (7)0.0590 (11)
H8A0.97150.11050.83560.071*
C91.1372 (5)0.0612 (3)0.9845 (9)0.0759 (15)
H9A1.16860.05120.89170.091*
C101.2084 (5)0.0411 (3)1.1563 (10)0.0865 (19)
H10A1.28850.01741.17970.104*
C111.1627 (6)0.0554 (3)1.2906 (9)0.0836 (17)
H11A1.21180.04201.40650.100*
C121.0435 (5)0.0899 (2)1.2575 (6)0.0642 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1224 (14)0.1444 (17)0.0590 (8)0.0170 (12)0.0247 (9)0.0086 (9)
S0.0607 (7)0.0481 (6)0.0785 (8)0.0014 (5)0.0256 (6)0.0008 (6)
P0.0463 (6)0.0495 (6)0.0467 (6)0.0072 (5)0.0187 (5)0.0010 (5)
O10.0543 (16)0.0572 (18)0.0650 (18)0.0168 (14)0.0309 (14)0.0129 (14)
O20.084 (2)0.070 (2)0.063 (2)0.0186 (18)0.0395 (18)0.0105 (16)
O30.0433 (14)0.0463 (16)0.0648 (18)0.0068 (12)0.0173 (13)0.0028 (14)
N10.0452 (18)0.0482 (19)0.0533 (19)0.0053 (15)0.0216 (16)0.0008 (15)
N20.077 (3)0.080 (3)0.124 (4)0.006 (3)0.035 (3)0.046 (3)
C10.081 (4)0.111 (5)0.081 (4)0.041 (4)0.033 (3)0.001 (3)
C20.079 (3)0.072 (3)0.065 (3)0.020 (3)0.036 (3)0.005 (2)
C30.120 (5)0.096 (4)0.070 (3)0.002 (4)0.060 (4)0.004 (3)
C40.106 (4)0.081 (4)0.078 (4)0.016 (3)0.045 (3)0.001 (3)
C50.044 (2)0.068 (3)0.067 (3)0.004 (2)0.018 (2)0.014 (2)
C60.048 (2)0.041 (2)0.042 (2)0.0015 (16)0.0155 (17)0.0039 (16)
C70.041 (2)0.043 (2)0.058 (2)0.0001 (17)0.0169 (18)0.0001 (19)
C80.056 (3)0.052 (3)0.075 (3)0.002 (2)0.031 (2)0.004 (2)
C90.063 (3)0.059 (3)0.121 (5)0.001 (2)0.051 (3)0.010 (3)
C100.053 (3)0.055 (3)0.142 (6)0.008 (2)0.020 (3)0.001 (3)
C110.065 (3)0.070 (3)0.093 (4)0.005 (3)0.002 (3)0.009 (3)
C120.062 (3)0.060 (3)0.062 (3)0.001 (2)0.010 (2)0.006 (2)
Geometric parameters (Å, º) top
Cl—C121.743 (5)C3—H3A0.9600
S—P1.8966 (16)C3—H3B0.9600
P—O11.548 (3)C3—H3C0.9600
P—O21.566 (3)C4—H4A0.9700
P—O31.631 (3)C4—H4B0.9700
O1—C21.467 (5)C5—C61.442 (6)
O2—C41.435 (6)C6—C71.478 (5)
O3—N11.412 (4)C7—C121.380 (6)
N1—C61.273 (5)C7—C81.381 (6)
N2—C51.136 (6)C8—C91.376 (7)
C1—C21.469 (7)C8—H8A0.9300
C1—H1B0.9600C9—C101.377 (9)
C1—H1C0.9600C9—H9A0.9300
C1—H1D0.9600C10—C111.347 (9)
C2—H2A0.9700C10—H10A0.9300
C2—H2B0.9700C11—C121.378 (7)
C3—C41.440 (7)C11—H11A0.9300
O1—P—O298.17 (17)O2—C4—C3110.1 (5)
O1—P—O398.71 (16)O2—C4—H4A109.6
O2—P—O3104.07 (18)C3—C4—H4A109.6
O1—P—S118.96 (13)O2—C4—H4B109.6
O2—P—S119.75 (15)C3—C4—H4B109.6
O3—P—S113.90 (12)H4A—C4—H4B108.2
C2—O1—P122.8 (3)N2—C5—C6177.0 (5)
C4—O2—P124.7 (3)N1—C6—C5122.6 (4)
N1—O3—P111.1 (2)N1—C6—C7117.2 (3)
C6—N1—O3111.4 (3)C5—C6—C7120.1 (4)
C2—C1—H1B109.5C12—C7—C8118.0 (4)
C2—C1—H1C109.5C12—C7—C6122.8 (4)
H1B—C1—H1C109.5C8—C7—C6119.2 (4)
C2—C1—H1D109.5C9—C8—C7121.1 (5)
H1B—C1—H1D109.5C9—C8—H8A119.4
H1C—C1—H1D109.5C7—C8—H8A119.4
O1—C2—C1108.9 (4)C8—C9—C10119.4 (5)
O1—C2—H2A109.9C8—C9—H9A120.3
C1—C2—H2A109.9C10—C9—H9A120.3
O1—C2—H2B109.9C11—C10—C9120.3 (5)
C1—C2—H2B109.9C11—C10—H10A119.8
H2A—C2—H2B108.3C9—C10—H10A119.8
C4—C3—H3A109.5C10—C11—C12120.4 (5)
C4—C3—H3B109.5C10—C11—H11A119.8
H3A—C3—H3B109.5C12—C11—H11A119.8
C4—C3—H3C109.5C11—C12—C7120.7 (5)
H3A—C3—H3C109.5C11—C12—Cl119.7 (4)
H3B—C3—H3C109.5C7—C12—Cl119.6 (4)
O2—P—O1—C2174.0 (4)C5—C6—C7—C1258.7 (6)
O3—P—O1—C280.3 (4)N1—C6—C7—C855.6 (5)
S—P—O1—C243.2 (4)C5—C6—C7—C8120.9 (5)
O1—P—O2—C4166.5 (4)C12—C7—C8—C90.2 (7)
O3—P—O2—C492.3 (5)C6—C7—C8—C9179.9 (4)
S—P—O2—C436.3 (5)C7—C8—C9—C100.7 (7)
O1—P—O3—N1177.2 (2)C8—C9—C10—C110.2 (8)
O2—P—O3—N176.5 (3)C9—C10—C11—C120.6 (9)
S—P—O3—N155.7 (3)C10—C11—C12—C71.1 (8)
P—O3—N1—C6179.0 (3)C10—C11—C12—Cl177.9 (5)
P—O1—C2—C1164.6 (4)C8—C7—C12—C110.7 (7)
P—O2—C4—C3170.6 (4)C6—C7—C12—C11179.0 (4)
O3—N1—C6—C50.4 (5)C8—C7—C12—Cl178.3 (3)
O3—N1—C6—C7176.0 (3)C6—C7—C12—Cl2.0 (6)
N1—C6—C7—C12124.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.583.396 (6)142
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14ClN2O3PS
Mr332.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.518 (2), 20.215 (4), 7.9650 (16)
β (°) 110.11 (3)
V3)1590.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.870, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
2889, 2889, 1981
Rint0.000
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.192, 1.09
No. of reflections2889
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.39

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.583.396 (6)142.4
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Social Development Foundation of Jiangsu Province, China (No. BS2007060).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHudson, J. E. & Obudho, W. O. (1972). Mosq. News, 32, 37-46.  CAS Google Scholar
First citationLe Berre, R., Escaffre, H., Pendriez, B., Grebaut, S. & Pengalet, P. (1972). Control of Simulium damnosum, the Vector of Human Onchocerciasis in West Africa. II. Test by Classic Application of New Insecticides and New Formulations. Bobo-Dioulasso, Upper Volta:  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalter, A. M. & Clifton, E. M. (1973). J. Agric. Food Chem. 21, 762-763.  PubMed Web of Science Google Scholar
First citationWang, P. H., Wang, R., Dai, J. R., Wu, X. Q. & Xu, J. (1996). Acta Pharm. Sin. 31, 918-924.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds