metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­[(1-ammonio-1-phosphono­ethyl)phospho­nato]zinc(II) tetra­hydrate

aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, prosp. Palladina 32/34, 03680 Ukraine
*Correspondence e-mail: dudco_anatolij@ukr.net

(Received 6 March 2009; accepted 23 March 2009; online 28 March 2009)

The title compound, [Zn(C2H8NO6P2)2(H2O)4]·4H2O, was synthesized by the reaction of ZnCl2 with 1-amino­ethane-1,1-diyldiphospho­nic acid in aqueous solution. The asymmetric unit contains one-half of the complex and two water mol­ecules of solvation. The Zn atom occupies a special position on an inversion centre. This results in a slightly distorted octa­hedral coordination environment, which consists of the O atoms from two phospho­nic acids and four water mol­ecules. The crystal structure displays N—H⋯O and O—H⋯O hydrogen bonding, which creates a three-dimensional network.

Related literature

Diphospho­nic acids are efficient drugs for the prevention of calcification and the inhibition of bone resorption, see: Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]). Diphospho­nic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis, see: Szabo et al. (2002[Szabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894-2903.]). For related structures, see: Li et al. (2006[Li, M., Chen, S., Xiang, J., He, H., Yuan, L. & Sun, J. (2006). Cryst. Growth Des. 6, 1250-1255.], 2007[Li, M. & Sun, J.-T. (2007). Acta Cryst. E63, m1370-m1372.]); Lin et al. (2007[Lin, L., Zhang, T., Fan, Y., Ding, D. & Hou, H. (2007). J. Mol. Struct. 837, 107-117.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H8NO6P2)2(H2O)4]·4H2O

  • Mr = 617.57

  • Triclinic, [P \overline 1]

  • a = 5.6712 (4) Å

  • b = 9.3279 (6) Å

  • c = 10.7009 (7) Å

  • α = 96.440 (3)°

  • β = 90.788 (3)°

  • γ = 102.080 (3)°

  • V = 549.65 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 173 K

  • 0.36 × 0.10 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.612, Tmax = 0.945

  • 8897 measured reflections

  • 2244 independent reflections

  • 1747 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.081

  • S = 1.00

  • 2244 reflections

  • 182 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.93 (4) 1.96 (4) 2.796 (4) 150 (3)
N1—H1B⋯O10 0.85 (4) 1.99 (4) 2.827 (4) 168 (3)
N1—H1C⋯O3i 0.90 (4) 2.01 (4) 2.851 (3) 153 (3)
O2—H2O⋯O3ii 0.78 (3) 1.76 (3) 2.536 (3) 172 (4)
O5—H5O⋯O6iii 0.793 (18) 1.726 (19) 2.519 (3) 177 (4)
O7—H71⋯O8iv 0.84 (4) 2.05 (4) 2.826 (3) 155 (3)
O7—H72⋯O10 0.76 (4) 2.00 (4) 2.748 (3) 168 (4)
O8—H81⋯O2 0.82 (4) 1.97 (4) 2.772 (3) 163 (3)
O8—H82⋯O9 0.86 (4) 1.79 (4) 2.646 (3) 174 (3)
O9—H91⋯O5v 0.87 (4) 1.94 (4) 2.810 (3) 172 (3)
O9—H92⋯O4vi 0.83 (4) 1.91 (4) 2.715 (3) 165 (4)
O10—H101⋯O4vii 0.85 (4) 1.90 (4) 2.744 (3) 175 (3)
O10—H102⋯O9iv 0.80 (4) 1.96 (4) 2.741 (3) 167 (4)
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+2, -z+1; (iii) -x, -y+2, -z; (iv) -x+1, -y+1, -z+1; (v) x, y, z+1; (vi) -x, -y+1, -z+1; (vii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Matczak-Jon et al., 2005). Diphosphonic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo et al., 2002). The asymmetric unit of title compound contains one-half of the formula unit (Fig.1); Zn atom occupy special position at the inversion centre and creates a slightly distorted octahedral coordination environment, which consist of two phosphonic and four aqueous oxygen atoms. The coordinated diphosphonic acids residue exist as zwitterions with positive charge on NH3 group and negative on the oxygen atom of the non-coordinated phosphonic group. The crystal structure displays N—H···O and O—H···O hydrogen bonding, which creates a three-dimensional network (Table 1, Fig.2).

Related literature top

Diphosphonic acids are efficient drugs for the prevention of calcification and the inhibition of bone resorption, see: Matczak-Jon et al. (2005). Diphosphonic acids and their metal complexes are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis, see: Szabo et al. (2002). For related structures, see: Li et al. (2006, 2007); Lin et al. (2007). [formula implies tetrahydrate; scheme shows dihydrate]

Experimental top

10 ml of the 0.01 M ZnCl2 aqueous solution was added to the 10 ml of 0.02 M water solution of 1-aminoethane-1,1-diyldiphosphonic acid. Colorless crystals of title compound were obtained after 2 weeks of slow evaporation of the resulted solution.

Refinement top

H atoms bonded to N and O were located in a difference map and were freely refined with Uiso(H) = 1.2 Ueq of the carrier atom. Other H atoms which bonded to C were positioned geometrically and refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The title compound showing 50% probability displacement ellipsoids for the non-hydrogen atoms [Symmetry code: (i) -x, 1 - y, 1 - z].
[Figure 2] Fig. 2. Crystal packing of title compound, projection along a axis. Dashed lines indicate hydrogen bonds.
Tetraaquabis[(1-ammonio-1-phosphonoethyl)phosphonato]zinc(II) tetrahydrate top
Crystal data top
[Zn(C2H8NO6P2)2(H2O)4]·4H2OZ = 1
Mr = 617.57F(000) = 320
Triclinic, P1Dx = 1.866 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6712 (4) ÅCell parameters from 2105 reflections
b = 9.3279 (6) Åθ = 2.3–25.9°
c = 10.7009 (7) ŵ = 1.50 mm1
α = 96.440 (3)°T = 173 K
β = 90.788 (3)°Block, colourless
γ = 102.080 (3)°0.36 × 0.10 × 0.04 mm
V = 549.65 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2244 independent reflections
Radiation source: fine-focus sealed tube1747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 8.26 pixels mm-1θmax = 26.4°, θmin = 2.3°
ϕ and ω scansh = 77
Absorption correction: numerical
(SADABS; Bruker, 2005)
k = 1110
Tmin = 0.612, Tmax = 0.945l = 1313
8897 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0395P)2]
where P = (Fo2 + 2Fc2)/3
2244 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.48 e Å3
Crystal data top
[Zn(C2H8NO6P2)2(H2O)4]·4H2Oγ = 102.080 (3)°
Mr = 617.57V = 549.65 (6) Å3
Triclinic, P1Z = 1
a = 5.6712 (4) ÅMo Kα radiation
b = 9.3279 (6) ŵ = 1.50 mm1
c = 10.7009 (7) ÅT = 173 K
α = 96.440 (3)°0.36 × 0.10 × 0.04 mm
β = 90.788 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2244 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2005)
1747 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.945Rint = 0.058
8897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.39 e Å3
2244 reflectionsΔρmin = 0.48 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.50000.50000.01171 (16)
P10.02405 (14)0.80873 (8)0.37915 (7)0.01033 (19)
P20.00669 (14)0.81048 (9)0.09143 (7)0.0116 (2)
C10.1808 (5)0.8672 (3)0.2381 (3)0.0109 (6)
C20.2791 (6)1.0348 (3)0.2544 (3)0.0176 (7)
H2A0.39831.06140.32480.026*
H2B0.14611.08550.27160.026*
H2C0.35571.06440.17700.026*
N10.3905 (5)0.7921 (3)0.2240 (3)0.0133 (6)
H1A0.483 (6)0.830 (4)0.160 (3)0.020*
H1B0.349 (6)0.699 (4)0.208 (3)0.020*
H1C0.485 (6)0.807 (4)0.295 (3)0.020*
O10.0090 (4)0.6449 (2)0.37040 (19)0.0135 (5)
O20.2165 (4)0.8783 (2)0.4886 (2)0.0143 (5)
H2O0.206 (6)0.956 (4)0.519 (3)0.017*
O30.1966 (4)0.8741 (2)0.39210 (19)0.0139 (5)
O40.0857 (4)0.6470 (2)0.0759 (2)0.0181 (5)
O50.1793 (4)0.8548 (2)0.0123 (2)0.0148 (5)
H5O0.182 (6)0.931 (3)0.039 (3)0.018*
O60.1990 (4)0.8997 (2)0.0930 (2)0.0156 (5)
O70.1908 (4)0.3844 (3)0.3764 (2)0.0183 (5)
H710.319 (7)0.371 (4)0.408 (3)0.022*
H720.204 (7)0.413 (4)0.312 (4)0.022*
O80.3234 (4)0.6366 (3)0.5883 (2)0.0152 (5)
H810.311 (6)0.719 (4)0.571 (3)0.018*
H820.300 (6)0.633 (4)0.667 (4)0.018*
O90.2666 (4)0.6106 (3)0.8304 (2)0.0181 (5)
H910.228 (6)0.681 (4)0.882 (3)0.022*
H920.189 (6)0.532 (4)0.852 (3)0.022*
O100.3107 (4)0.4849 (3)0.1490 (2)0.0187 (5)
H1010.236 (6)0.448 (4)0.079 (4)0.022*
H1020.437 (7)0.460 (4)0.143 (3)0.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0117 (3)0.0109 (3)0.0129 (3)0.0029 (2)0.0003 (2)0.0021 (2)
P10.0105 (4)0.0103 (4)0.0105 (4)0.0031 (3)0.0003 (3)0.0009 (3)
P20.0115 (4)0.0125 (4)0.0116 (4)0.0031 (3)0.0009 (3)0.0035 (3)
C10.0096 (15)0.0088 (15)0.0146 (16)0.0030 (12)0.0003 (12)0.0007 (12)
C20.0208 (18)0.0114 (16)0.0183 (18)0.0021 (13)0.0001 (14)0.0017 (13)
N10.0105 (14)0.0155 (15)0.0134 (15)0.0010 (12)0.0017 (11)0.0032 (12)
O10.0179 (12)0.0093 (11)0.0133 (12)0.0028 (9)0.0007 (9)0.0011 (8)
O20.0164 (12)0.0141 (12)0.0129 (12)0.0067 (10)0.0032 (9)0.0032 (9)
O30.0118 (11)0.0150 (12)0.0154 (12)0.0049 (9)0.0013 (9)0.0004 (9)
O40.0224 (13)0.0143 (12)0.0158 (12)0.0001 (9)0.0047 (10)0.0013 (9)
O50.0187 (12)0.0118 (12)0.0167 (12)0.0061 (10)0.0061 (9)0.0080 (9)
O60.0113 (11)0.0206 (12)0.0178 (12)0.0060 (9)0.0024 (9)0.0092 (9)
O70.0186 (13)0.0225 (13)0.0162 (13)0.0090 (10)0.0004 (11)0.0043 (10)
O80.0146 (12)0.0139 (12)0.0181 (13)0.0034 (10)0.0017 (10)0.0054 (10)
O90.0201 (13)0.0148 (12)0.0199 (13)0.0042 (10)0.0041 (10)0.0025 (10)
O100.0152 (13)0.0239 (13)0.0176 (13)0.0072 (11)0.0022 (10)0.0004 (10)
Geometric parameters (Å, º) top
Zn1—O12.050 (2)C2—H2A0.9800
Zn1—O1i2.050 (2)C2—H2B0.9800
Zn1—O7i2.071 (2)C2—H2C0.9800
Zn1—O72.071 (2)N1—H1A0.93 (4)
Zn1—O8i2.141 (2)N1—H1B0.85 (4)
Zn1—O82.141 (2)N1—H1C0.90 (4)
P1—O11.492 (2)O2—H2O0.78 (3)
P1—O31.504 (2)O5—H5O0.793 (18)
P1—O21.575 (2)O7—H710.84 (4)
P1—C11.839 (3)O7—H720.76 (4)
P2—O41.486 (2)O8—H810.82 (4)
P2—O61.503 (2)O8—H820.86 (4)
P2—O51.571 (2)O9—H910.87 (4)
P2—C11.846 (3)O9—H920.83 (4)
C1—N11.502 (4)O10—H1010.85 (4)
C1—C21.535 (4)O10—H1020.80 (4)
O1—Zn1—O1i179.999 (1)N1—C1—P1107.2 (2)
O1—Zn1—O7i90.77 (9)C2—C1—P1110.6 (2)
O1i—Zn1—O7i89.23 (9)N1—C1—P2106.55 (19)
O1—Zn1—O789.23 (9)C2—C1—P2110.3 (2)
O1i—Zn1—O790.77 (9)P1—C1—P2113.58 (16)
O7i—Zn1—O7180.00 (11)C1—C2—H2A109.5
O1—Zn1—O8i88.74 (9)C1—C2—H2B109.5
O1i—Zn1—O8i91.26 (9)H2A—C2—H2B109.5
O7i—Zn1—O8i92.46 (9)C1—C2—H2C109.5
O7—Zn1—O8i87.54 (9)H2A—C2—H2C109.5
O1—Zn1—O891.27 (9)H2B—C2—H2C109.5
O1i—Zn1—O888.73 (9)C1—N1—H1A108 (2)
O7i—Zn1—O887.54 (9)C1—N1—H1B114 (2)
O7—Zn1—O892.46 (9)H1A—N1—H1B110 (3)
O8i—Zn1—O8180.0C1—N1—H1C113 (2)
O1—P1—O3118.11 (12)H1A—N1—H1C108 (3)
O1—P1—O2107.82 (12)H1B—N1—H1C104 (3)
O3—P1—O2111.01 (12)P1—O1—Zn1133.80 (13)
O1—P1—C1107.13 (13)P1—O2—H2O115 (3)
O3—P1—C1108.84 (13)P2—O5—H5O118 (3)
O2—P1—C1102.79 (13)Zn1—O7—H71113 (2)
O4—P2—O6117.67 (13)Zn1—O7—H72114 (3)
O4—P2—O5108.21 (12)H71—O7—H72114 (4)
O6—P2—O5110.56 (12)Zn1—O8—H81101 (2)
O4—P2—C1108.34 (13)Zn1—O8—H82103 (2)
O6—P2—C1108.52 (13)H81—O8—H82108 (3)
O5—P2—C1102.44 (13)H91—O9—H92106 (3)
N1—C1—C2108.4 (3)H101—O10—H102103 (3)
O1—P1—C1—N147.7 (2)O6—P2—C1—C254.5 (2)
O3—P1—C1—N1176.47 (18)O5—P2—C1—C262.5 (2)
O2—P1—C1—N165.8 (2)O4—P2—C1—P158.45 (19)
O1—P1—C1—C2165.7 (2)O6—P2—C1—P170.38 (18)
O3—P1—C1—C265.6 (2)O5—P2—C1—P1172.68 (15)
O2—P1—C1—C252.2 (2)O3—P1—O1—Zn192.94 (19)
O1—P1—C1—P269.67 (18)O2—P1—O1—Zn133.8 (2)
O3—P1—C1—P259.08 (18)C1—P1—O1—Zn1143.85 (17)
O2—P1—C1—P2176.85 (15)O7i—Zn1—O1—P141.88 (18)
O4—P2—C1—N159.3 (2)O7—Zn1—O1—P1138.12 (18)
O6—P2—C1—N1171.88 (19)O8i—Zn1—O1—P1134.32 (18)
O5—P2—C1—N154.9 (2)O8—Zn1—O1—P145.68 (18)
O4—P2—C1—C2176.7 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6ii0.93 (4)1.96 (4)2.796 (4)150 (3)
N1—H1B···O100.85 (4)1.99 (4)2.827 (4)168 (3)
N1—H1C···O3ii0.90 (4)2.01 (4)2.851 (3)153 (3)
O2—H2O···O3iii0.78 (3)1.76 (3)2.536 (3)172 (4)
O5—H5O···O6iv0.79 (2)1.73 (2)2.519 (3)177 (4)
O7—H71···O8v0.84 (4)2.05 (4)2.826 (3)155 (3)
O7—H72···O100.76 (4)2.00 (4)2.748 (3)168 (4)
O8—H81···O20.82 (4)1.97 (4)2.772 (3)163 (3)
O8—H82···O90.86 (4)1.79 (4)2.646 (3)174 (3)
O9—H91···O5vi0.87 (4)1.94 (4)2.810 (3)172 (3)
O9—H92···O4i0.83 (4)1.91 (4)2.715 (3)165 (4)
O10—H101···O4vii0.85 (4)1.90 (4)2.744 (3)175 (3)
O10—H102···O9v0.80 (4)1.96 (4)2.741 (3)167 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x, y+2, z+1; (iv) x, y+2, z; (v) x+1, y+1, z+1; (vi) x, y, z+1; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C2H8NO6P2)2(H2O)4]·4H2O
Mr617.57
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.6712 (4), 9.3279 (6), 10.7009 (7)
α, β, γ (°)96.440 (3), 90.788 (3), 102.080 (3)
V3)549.65 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.36 × 0.10 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2005)
Tmin, Tmax0.612, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
8897, 2244, 1747
Rint0.058
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.081, 1.00
No. of reflections2244
No. of parameters182
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.48

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.93 (4)1.96 (4)2.796 (4)150 (3)
N1—H1B···O100.85 (4)1.99 (4)2.827 (4)168 (3)
N1—H1C···O3i0.90 (4)2.01 (4)2.851 (3)153 (3)
O2—H2O···O3ii0.78 (3)1.76 (3)2.536 (3)172 (4)
O5—H5O···O6iii0.793 (18)1.726 (19)2.519 (3)177 (4)
O7—H71···O8iv0.84 (4)2.05 (4)2.826 (3)155 (3)
O7—H72···O100.76 (4)2.00 (4)2.748 (3)168 (4)
O8—H81···O20.82 (4)1.97 (4)2.772 (3)163 (3)
O8—H82···O90.86 (4)1.79 (4)2.646 (3)174 (3)
O9—H91···O5v0.87 (4)1.94 (4)2.810 (3)172 (3)
O9—H92···O4vi0.83 (4)1.91 (4)2.715 (3)165 (4)
O10—H101···O4vii0.85 (4)1.90 (4)2.744 (3)175 (3)
O10—H102···O9iv0.80 (4)1.96 (4)2.741 (3)167 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z+1; (iii) x, y+2, z; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x, y+1, z+1; (vii) x, y+1, z.
 

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, M., Chen, S., Xiang, J., He, H., Yuan, L. & Sun, J. (2006). Cryst. Growth Des. 6, 1250–1255.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, M. & Sun, J.-T. (2007). Acta Cryst. E63, m1370–m1372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, L., Zhang, T., Fan, Y., Ding, D. & Hou, H. (2007). J. Mol. Struct. 837, 107–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894–2903.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds