[Journal logo]

Volume 65 
Part 4 
Pages o692-o693  
April 2009  

Received 22 January 2009
Accepted 2 March 2009
Online 6 March 2009

Key indicators
Single-crystal X-ray study
T = 173 K
Mean [sigma](C-C) = 0.006 Å
Disorder in main residue
R = 0.074
wR = 0.230
Data-to-parameter ratio = 13.1
Details
Open access

7,11,15,28-Tetrakis[(2-formylphenoxy)methyl]-1,21,23,25-tetramethylresorcin[4]arene cavitand ethyl acetate clathrate at 173 K

aSchool of Chemistry, University of KwaZulu-Natal, Durban, 4000, South Africa, and bDepartment of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland
Correspondence e-mail: maguireg@ukzn.ac.za

The title compound, C68H56O16, was synthesized as a novel synthetic intermediate towards deeper and more elaborate resorcin[4]arene cavitands. The structure is the first reported example of a resorcin[4]arene cavitand bearing aromatic aldehyde functional groups at the extra-annular rim of the molecule. The 2-formylphenoxy residues are found to assume two different orientations above the molecular cavity. One half of the resorcin[4]arene cavitand molecule appears in the asymmetric unit; the complete resorcin[4]arene cavitand structure was generated across a mirror plane. In addition, a highly disordered ethyl acetate solvent molecule is present within the molecular cavity.

Related literature

For literature pertaining to the preparation of precursors to the reported compound, see: Middel et al. (2001[Middel, O., Verboom, W. & Reinhoudt, D. N. (2001). J. Org. Chem. 66, 3998-4005.]); Sorrell & Pigge (1993[Sorrell, T. N. & Pigge, F. C. (1993). J. Org. Chem. 58, 784-785.]). For related literature on synthetic analogues and other precursors which illustrate the host capabilities of resorcin[4]arene cavitand molecules, see: Friedrich et al. (2007[Friedrich, H. B., Howie, R. A., Maguire, G. E. M. & Mc Kay, M. G. (2007). Acta Cryst. E63, o4346.]); Mc Kay et al. (2007[McKay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2007). Acta Cryst. E63, o4345.], 2008[Mc Kay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2008). Acta Cryst. E64, o98.]). For the implemetation of the SQUEEZE function in PLATON, see: Tam et al. (2005[Tam, T. F., Leung-Toung, R., Wang, Y., Spino, M. & Lough, A. J. (2005). Acta Cryst. E61, m2601-m2603.]).

[Scheme 1]

Experimental

Crystal data
  • C68H56O16

  • Mr = 1183.17

  • Monoclinic, P 21 /m

  • a = 11.9228 (7) Å

  • b = 23.2806 (15) Å

  • c = 12.2320 (7) Å

  • [beta] = 117.005 (3)°

  • V = 3025.0 (3) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.09 mm-1

  • T = 173 K

  • 0.37 × 0.34 × 0.26 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (SAINT-NT; Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.977

  • 24858 measured reflections

  • 5470 independent reflections

  • 3556 reflections with I > 2[sigma](I)

  • Rint = 0.079

Refinement
  • R[F2 > 2[sigma](F2)] = 0.074

  • wR(F2) = 0.230

  • S = 1.11

  • 5470 reflections

  • 417 parameters

  • 21 restraints

  • H-atom parameters constrained

  • [Delta][rho]max = 0.64 e Å-3

  • [Delta][rho]min = -0.48 e Å-3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2233 ).


Acknowledgements

The financial support of the DST-NRF Centre of Excellence in Catalysis, is duly acknowledged. Our thanks to Dr Manuel Fernandes at the University of the Witwatersrand for performing the data acquisition and structure solution.

References

Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  [CrossRef] [details]
Friedrich, H. B., Howie, R. A., Maguire, G. E. M. & Mc Kay, M. G. (2007). Acta Cryst. E63, o4346.  [CSD] [CrossRef] [details]
McKay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2007). Acta Cryst. E63, o4345.  [CSD] [CrossRef] [details]
Mc Kay, M. G., Friedrich, H. B. & Maguire, G. E. M. (2008). Acta Cryst. E64, o98.  [CSD] [CrossRef] [details]
Middel, O., Verboom, W. & Reinhoudt, D. N. (2001). J. Org. Chem. 66, 3998-4005.  [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Sorrell, T. N. & Pigge, F. C. (1993). J. Org. Chem. 58, 784-785.  [CrossRef] [ChemPort]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [ISI] [CrossRef] [details]
Tam, T. F., Leung-Toung, R., Wang, Y., Spino, M. & Lough, A. J. (2005). Acta Cryst. E61, m2601-m2603.  [CSD] [CrossRef] [details]


Acta Cryst (2009). E65, o692-o693   [ doi:10.1107/S1600536809007582 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.