organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-6-Chloro-N′-(3,5-di­chloro-2-hy­droxy­benzyl­­idene)­nicotinohydrazide

aCollege of Chemistry and Pharmacy, Qingdao Agricultural University, Shandong 266109, People's Republic of China
*Correspondence e-mail: furbear01@163.com

(Received 26 February 2009; accepted 27 February 2009; online 6 March 2009)

The title Schiff base compound, C13H8Cl3N3O2, was synthesized by the condensation reaction of 3,5-dichloro­salicyl­aldehyde with 6-chloro­nicotinic acid hydrazide in 95% ethanol. The mol­ecule is nearly planar, with a dihedral angle of 1.9 (2)° between the aromatic ring planes, and an intra­molecular O—H⋯N hydrogen bond is observed. In the crystal, the mol­ecules are connected by inter­molecular N—H⋯O hydrogen bonds into infinite chains propagating in [100].

Related literature

For general background, see: Kim et al. (2005[Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776-16777.]); Fan et al. (2007[Fan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535-538.]). For background on the biological activities of Schiff bases, see: Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]); Takeuchi et al. (1998[Takeuchi, T., Bottcher, A., Quezada, C. M., Simon, M. I., Meade, T. J. & Gray, H. B. (1998). J. Am. Chem. Soc. 120 . 8555-8556.]). For a related structure, see: Zhi (2008[Zhi, F. (2008). Acta Cryst. E64, o150.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl3N3O2

  • Mr = 344.57

  • Monoclinic, P 21 /c

  • a = 4.8920 (10) Å

  • b = 18.014 (4) Å

  • c = 16.112 (3) Å

  • β = 97.90 (3)°

  • V = 1406.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 298 K

  • 0.27 × 0.23 × 0.23 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.842, Tmax = 0.864

  • 7275 measured reflections

  • 2478 independent reflections

  • 1323 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.114

  • S = 1.01

  • 2478 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 2.20 2.930 (4) 142
O1—H1⋯N1 0.82 1.82 2.540 (4) 147
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been widely investigated over a century (Fan et al., 2007; Kim et al., 2005). Some of the complexes derived from Schiff bases have been found to have pharmacological and antitumor properties (Ren et al., 2002; Takeuchi, et al., 1998). In this paper, the crystal structure of the title compound, (I), a new Schiff base compound derived from the condensation reaction of 3,5-dichlorosalicylaldehyde with 6-chloronicotinic acid hydrazide is reported.

The molecule of (I) displays a trans configuration with respect to the C=N and C—N bonds (Fig. 1). All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable to those in the related compound 6-chloro-N'-(2-hydroxy-1-naphthylmethylene)nicotinohydrazide (Zhi 2008). The Schiff base molecule is nearly planar, with a dihedral angle between the benzene ring and the pyridine ring of 1.9 (2)°. An intramolecular O—H···N hydrogen bond is observed. The molecules are connected via intermolecular N—H···O hydrogen bonds into infinite chains along the a axis (Table 1, Fig. 2).

Related literature top

For general background, see: Kim et al. (2005); Fan et al. (2007). For background on the biological activities of Schiff bases, see: Ren et al. (2002); Takeuchi et al. (1998). For a related structure, see: Zhi (2008). For reference structural data, see: Allen et al. (1987).

Experimental top

3,5-Dichlorosalicylaldehyde (0.1 mmol, 19.0 mg) and 6-chloronicotinic acid hydrazide (0.1 mmol, 17.1 mg) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Light yellow blocks of (I) were formed by gradual evaporation of the solvent over a period of five days at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å, O—H = 0.82 Å and N—H = 0.86 Å and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The infinite chains structure formed via hydrogen bonds, H atoms have been omitted for clarity. The dashed lines indicate the connections between the donor and acceptor atoms of the hydrogen bonds.
(E)-6-Chloro-N'-(3,5-dichloro-2- hydroxybenzylidene)nicotinohydrazide top
Crystal data top
C13H8Cl3N3O2F(000) = 696
Mr = 344.57Dx = 1.627 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 669 reflections
a = 4.892 (1) Åθ = 2.6–18.8°
b = 18.014 (4) ŵ = 0.66 mm1
c = 16.112 (3) ÅT = 298 K
β = 97.90 (3)°Block, light yellow
V = 1406.4 (5) Å30.27 × 0.23 × 0.23 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
2478 independent reflections
Radiation source: fine-focus sealed tube1323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 55
Tmin = 0.842, Tmax = 0.864k = 1521
7275 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.2069P]
where P = (Fo2 + 2Fc2)/3
2478 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C13H8Cl3N3O2V = 1406.4 (5) Å3
Mr = 344.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.892 (1) ŵ = 0.66 mm1
b = 18.014 (4) ÅT = 298 K
c = 16.112 (3) Å0.27 × 0.23 × 0.23 mm
β = 97.90 (3)°
Data collection top
Siemens SMART CCD
diffractometer
2478 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1323 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.864Rint = 0.078
7275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
2478 reflectionsΔρmin = 0.40 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3842 (2)0.62724 (6)0.45177 (7)0.0534 (3)
Cl21.2166 (3)0.50424 (7)0.65897 (7)0.0651 (4)
Cl31.2331 (3)1.28010 (7)0.69130 (8)0.0698 (4)
N10.9665 (7)0.8466 (2)0.6071 (2)0.0471 (9)
N21.0608 (7)0.91708 (18)0.6266 (2)0.0474 (9)
H21.23180.92610.64370.057*
O10.6119 (6)0.76626 (15)0.51866 (18)0.0542 (8)
H10.68000.80460.53970.081*
O20.6214 (6)0.95721 (16)0.59872 (19)0.0619 (9)
C11.0059 (8)0.7165 (2)0.6081 (2)0.0408 (10)
C20.7633 (8)0.7076 (2)0.5502 (2)0.0399 (10)
C30.6750 (8)0.6374 (2)0.5262 (2)0.0411 (11)
C40.8115 (8)0.5751 (2)0.5595 (3)0.0455 (11)
H40.74790.52800.54280.055*
C51.0456 (9)0.5834 (2)0.6182 (3)0.0461 (11)
C61.1444 (9)0.6532 (2)0.6417 (3)0.0450 (11)
H61.30360.65810.68010.054*
C71.1106 (9)0.7906 (3)0.6314 (2)0.0452 (11)
H71.28170.79640.66390.054*
C80.8673 (9)0.9716 (2)0.6171 (3)0.0450 (11)
C90.9672 (8)1.0483 (2)0.6324 (3)0.0410 (10)
C100.8110 (9)1.1062 (2)0.5936 (3)0.0506 (12)
H100.65191.09620.55660.061*
C110.8935 (9)1.1786 (3)0.6102 (3)0.0543 (12)
H110.79491.21830.58420.065*
C121.1270 (9)1.1895 (2)0.6666 (3)0.0477 (12)
N31.2807 (7)1.1365 (2)0.7059 (2)0.0502 (10)
C131.1988 (9)1.0670 (2)0.6874 (3)0.0493 (11)
H131.30511.02850.71330.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0452 (7)0.0496 (7)0.0632 (8)0.0075 (6)0.0002 (5)0.0027 (6)
Cl20.0715 (9)0.0529 (8)0.0676 (8)0.0141 (7)0.0015 (6)0.0027 (6)
Cl30.0842 (10)0.0520 (8)0.0722 (9)0.0184 (7)0.0071 (7)0.0060 (7)
N10.040 (2)0.040 (2)0.062 (3)0.0058 (19)0.0091 (18)0.0038 (19)
N20.036 (2)0.037 (2)0.067 (3)0.0058 (19)0.0010 (18)0.0074 (19)
O10.0454 (19)0.045 (2)0.069 (2)0.0041 (16)0.0032 (15)0.0010 (16)
O20.0317 (19)0.060 (2)0.092 (2)0.0082 (16)0.0027 (16)0.0115 (18)
C10.030 (2)0.045 (3)0.048 (3)0.004 (2)0.010 (2)0.005 (2)
C20.034 (3)0.035 (3)0.050 (3)0.002 (2)0.005 (2)0.001 (2)
C30.030 (2)0.049 (3)0.043 (3)0.002 (2)0.0032 (19)0.000 (2)
C40.048 (3)0.038 (3)0.053 (3)0.005 (2)0.016 (2)0.003 (2)
C50.048 (3)0.047 (3)0.044 (3)0.006 (2)0.010 (2)0.002 (2)
C60.041 (3)0.049 (3)0.045 (3)0.005 (2)0.007 (2)0.004 (2)
C70.035 (3)0.053 (3)0.048 (3)0.007 (2)0.006 (2)0.008 (2)
C80.040 (3)0.046 (3)0.049 (3)0.008 (2)0.006 (2)0.005 (2)
C90.033 (3)0.041 (3)0.049 (3)0.005 (2)0.006 (2)0.005 (2)
C100.041 (3)0.053 (3)0.055 (3)0.008 (2)0.001 (2)0.001 (2)
C110.053 (3)0.048 (3)0.061 (3)0.003 (2)0.003 (2)0.006 (2)
C120.052 (3)0.046 (3)0.047 (3)0.015 (2)0.013 (2)0.001 (2)
N30.043 (2)0.048 (3)0.057 (2)0.004 (2)0.0001 (18)0.006 (2)
C130.043 (3)0.044 (3)0.061 (3)0.002 (2)0.004 (2)0.006 (2)
Geometric parameters (Å, º) top
Cl1—C31.739 (4)C4—C51.389 (5)
Cl2—C51.736 (4)C4—H40.9300
Cl3—C121.742 (4)C5—C61.382 (5)
N1—C71.263 (5)C6—H60.9300
N1—N21.372 (4)C7—H70.9300
N2—C81.358 (5)C8—C91.474 (5)
N2—H20.8600C9—C131.380 (5)
O1—C21.349 (4)C9—C101.391 (5)
O1—H10.8200C10—C111.380 (6)
O2—C81.227 (5)C10—H100.9300
C1—C61.396 (5)C11—C121.373 (6)
C1—C21.414 (5)C11—H110.9300
C1—C71.460 (5)C12—N31.321 (5)
C2—C31.375 (5)N3—C131.337 (5)
C3—C41.376 (5)C13—H130.9300
C7—N1—N2120.9 (4)N1—C7—C1119.3 (4)
C8—N2—N1115.9 (4)N1—C7—H7120.3
C8—N2—H2122.1C1—C7—H7120.3
N1—N2—H2122.1O2—C8—N2121.3 (4)
C2—O1—H1109.5O2—C8—C9122.0 (4)
C6—C1—C2118.8 (4)N2—C8—C9116.7 (4)
C6—C1—C7120.8 (4)C13—C9—C10117.2 (4)
C2—C1—C7120.4 (4)C13—C9—C8124.0 (4)
O1—C2—C3118.6 (4)C10—C9—C8118.6 (4)
O1—C2—C1121.8 (4)C11—C10—C9119.6 (4)
C3—C2—C1119.5 (4)C11—C10—H10120.2
C2—C3—C4121.5 (4)C9—C10—H10120.2
C2—C3—Cl1119.1 (3)C12—C11—C10117.3 (4)
C4—C3—Cl1119.4 (3)C12—C11—H11121.4
C3—C4—C5119.3 (4)C10—C11—H11121.4
C3—C4—H4120.4N3—C12—C11125.5 (4)
C5—C4—H4120.4N3—C12—Cl3115.8 (3)
C6—C5—C4120.6 (4)C11—C12—Cl3118.7 (4)
C6—C5—Cl2120.8 (4)C12—N3—C13115.9 (4)
C4—C5—Cl2118.6 (3)N3—C13—C9124.5 (4)
C5—C6—C1120.3 (4)N3—C13—H13117.7
C5—C6—H6119.9C9—C13—H13117.7
C1—C6—H6119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.202.930 (4)142
O1—H1···N10.821.822.540 (4)147
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H8Cl3N3O2
Mr344.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.892 (1), 18.014 (4), 16.112 (3)
β (°) 97.90 (3)
V3)1406.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.27 × 0.23 × 0.23
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.842, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
7275, 2478, 1323
Rint0.078
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.114, 1.01
No. of reflections2478
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.40

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.862.202.930 (4)142
O1—H1···N10.821.822.540 (4)147
Symmetry code: (i) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationFan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535–538.  Web of Science CrossRef CAS Google Scholar
First citationKim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776–16777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTakeuchi, T., Bottcher, A., Quezada, C. M., Simon, M. I., Meade, T. J. & Gray, H. B. (1998). J. Am. Chem. Soc. 120 . 8555–8556.  Google Scholar
First citationZhi, F. (2008). Acta Cryst. E64, o150.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds