metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,5-di­methyl­anilinium) tetra­chlorido­zincate(II)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: wajda_sta@yahoo.fr

(Received 17 March 2009; accepted 18 March 2009; online 25 March 2009)

In the title compound, (C8H12N)2[ZnCl4], the Zn2+ ion adopts a distorted tetra­hedral coordination geometry. In the crystal, the cations and anions are linked by N—H⋯Cl hydrogen bonds, leading to ribbons propagating parallel to the a axis.

Related literature

For related structures, see: Guo et al. (2007[Guo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.]); Smirani & Rzaigui (2009[Smirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83.]). For background on hybrid materials, see: Tao et al. (2003[Tao, J., Yin, X., Jiang, Y. B., Yang, L. F., Huang, R. B. & Zheng, L. S. (2003). Eur. J. Inorg. Chem. pp. 2678-2682.]); Bringley & Rajeswaran (2006[Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304-m1305.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H12N)2[ZnCl4]

  • Mr = 451.58

  • Monoclinic, P 21 /n

  • a = 7.425 (2) Å

  • b = 12.884 (2) Å

  • c = 22.809 (2) Å

  • β = 96.16 (2)°

  • V = 2169.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 293 K

  • 0.20 × 0.13 × 0.10 mm

Data collection
  • Enraf–Nonius Turbo CAD-4 diffractometer

  • Absorption correction: none

  • 6539 measured reflections

  • 3947 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.033

  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.229

  • S = 1.05

  • 3947 reflections

  • 214 parameters

  • H-atom parameters not refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—Cl1 2.248 (2)
Zn1—Cl2 2.2502 (16)
Zn1—Cl3 2.274 (2)
Zn1—Cl4 2.2721 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl4i 0.89 2.25 3.125 (6) 169
N1—H1B⋯Cl3ii 0.89 2.54 3.304 (6) 145
N1—H1C⋯Cl2iii 0.89 2.31 3.172 (7) 162
N2—H2A⋯Cl1i 0.89 2.34 3.219 (6) 171
N2—H2B⋯Cl4iv 0.89 2.70 3.505 (7) 151
N2—H2C⋯Cl3ii 0.89 2.39 3.262 (6) 168
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) x-1, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Inorganic-organic hybrid materials are of great interest in solid state chemistry due to their enormous variety of intriguing structural topologies and their fascinating properties as well as great potential applications in many fields (Tao et al., 2003; Bringley & Rajeswaran, 2006). Here we report the crystal structure of bis(2,5-xylidinium) tetrachlorozincate (I).

As shown in Fig. 1, the asymmetric unit of (I) is built up from two 2,5-xylidinium cations and one tetrachlorozincate (II) anion. The Zn (II) ion is in a tetrahedral coordination environment composed of four Cl anions (Table 1). The Cl—Zn—Cl bond angles range from 106.13 (8) to 112.46 (8)°. These values indicate that the anionic [ZnCl4]2- tetrahedron is slightly distorted (Guo et al., 2007). The examination of the organic cation shows that the values of the N—C, C—C distances and N—C—C, C—C—C angles range from 1.343 (12) to 1.512 (11) Å and 115.90 (7) to 123.0 (6)°, respectively. These values show no significant difference from those obtained in other crystals involving the same organic groups (Smirani and Rzaigui, 2009).

A projection of the structure along the direction a shows that the [ZnCl4]2- anions are connected via N—H···Cl hydrogen bonds originating from NH3+ groups, so as to built inorganic ribbons at x = 0 and x = 1/2 (Fig. 2, Table 2). The 2,5-xylidinium cations are anchored onto the successive ribbons via hydrogen bonds and electrostatic and van der Waals interactions, to compensate their negative charges.

Related literature top

For related structures, see: Guo et al. (2007); Smirani & Rzaigui (2009). For background on hybrid materials, see: Tao et al. (2003); Bringley & Rajeswaran (2006).

Experimental top

An aqueous solution of 2,5-xylidine, HCl and ZnCl2 in a 2:2:1 molar ratio was prepared and colourless blocks of (I) grew as the water evaporated over the course of a few days.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms: N–H = 0.89, C–H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl-C,N).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I): displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing in (I) viewed along the a axis.
Bis(2,5-dimethylanilinium) tetrachloridozincate(II) top
Crystal data top
(C8H12N)2[ZnCl4]F(000) = 928
Mr = 451.58Dx = 1.383 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.425 (2) Åθ = 9.9–11.0°
b = 12.884 (2) ŵ = 1.62 mm1
c = 22.809 (2) ÅT = 293 K
β = 96.16 (2)°Block, colourless
V = 2169.5 (7) Å30.20 × 0.13 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius Turbo CAD-4
diffractometer
θmax = 28.0°, θmin = 2.4°
Radiation source: Enraf Nonius FR590h = 99
Nonprofiled ω scansk = 017
6539 measured reflectionsl = 1017
3947 independent reflections2 standard reflections every 120 min
2621 reflections with I > 2σ(I) intensity decay: 5%
Rint = 0.033
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters not refined
S = 1.05 w = 1/[σ2(Fo2) + (0.1531P)2]
where P = (Fo2 + 2Fc2)/3
3947 reflections(Δ/σ)max = 0.012
214 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
(C8H12N)2[ZnCl4]V = 2169.5 (7) Å3
Mr = 451.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.425 (2) ŵ = 1.62 mm1
b = 12.884 (2) ÅT = 293 K
c = 22.809 (2) Å0.20 × 0.13 × 0.10 mm
β = 96.16 (2)°
Data collection top
Enraf–Nonius Turbo CAD-4
diffractometer
Rint = 0.033
6539 measured reflections2 standard reflections every 120 min
3947 independent reflections intensity decay: 5%
2621 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.229H-atom parameters not refined
S = 1.05Δρmax = 0.50 e Å3
3947 reflectionsΔρmin = 0.61 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0360 (2)0.16857 (16)0.12060 (10)0.0688 (6)
Cl20.52806 (19)0.20922 (13)0.10654 (9)0.0537 (5)
Cl30.1904 (2)0.22519 (13)0.02438 (9)0.0583 (6)
Cl40.3103 (3)0.02537 (13)0.04807 (11)0.0808 (7)
N10.2378 (7)0.7499 (4)0.0004 (3)0.0562 (16)
H1A0.26290.80960.01830.084*
H1B0.11890.74510.01050.084*
H1C0.29500.74740.03280.084*
C10.2981 (7)0.6631 (4)0.0386 (3)0.0414 (17)
C30.3769 (8)0.6844 (4)0.0940 (3)0.0490 (19)
H30.39220.75310.10610.059*
C40.4345 (8)0.6053 (5)0.1327 (3)0.0527 (18)
C20.2704 (7)0.5621 (4)0.0171 (3)0.0407 (16)
C50.3295 (8)0.4834 (4)0.0569 (3)0.0513 (19)
H50.31530.41460.04510.062*
C90.1839 (10)0.5398 (6)0.0438 (3)0.062 (2)
H9A0.06530.57030.04900.093*
H9B0.17420.46610.04950.093*
H9C0.25670.56860.07210.093*
C80.4080 (9)0.5049 (5)0.1130 (4)0.0530 (19)
H80.44410.45020.13820.064*
C70.5214 (14)0.6282 (7)0.1943 (4)0.086 (3)
H7A0.64310.65220.19250.129*
H7B0.52350.56610.21770.129*
H7C0.45290.68080.21190.129*
N20.2368 (8)0.9737 (4)0.1100 (3)0.0565 (17)
H2A0.15251.02310.11140.085*
H2B0.34290.99990.09520.085*
H2C0.20610.92200.08720.085*
C100.2512 (9)0.9346 (4)0.1696 (3)0.0456 (17)
C130.1163 (9)0.8706 (5)0.1964 (3)0.0483 (19)
C110.3993 (9)0.9637 (6)0.1974 (4)0.062 (2)
H110.48631.00740.17820.075*
C140.0465 (11)0.8399 (7)0.1675 (4)0.082 (3)
H14A0.01860.77990.14330.123*
H14B0.14430.82400.19710.123*
H14C0.08130.89610.14340.123*
C120.4195 (10)0.9281 (7)0.2541 (4)0.065 (2)
C160.2860 (11)0.8619 (6)0.2797 (4)0.062 (2)
H160.29720.83460.31690.075*
C150.1412 (11)0.8360 (6)0.2523 (4)0.062 (2)
H150.05380.79290.27180.075*
C170.5803 (14)0.9593 (10)0.2849 (5)0.120 (4)
H17A0.68930.93490.26270.180*
H17B0.58441.03350.28790.180*
H17C0.57010.92930.32360.180*
Zn10.26302 (8)0.14604 (5)0.06412 (4)0.0418 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0506 (9)0.0874 (13)0.0709 (18)0.0007 (8)0.0174 (9)0.0083 (11)
Cl20.0423 (7)0.0579 (9)0.0584 (15)0.0086 (6)0.0064 (7)0.0055 (8)
Cl30.0709 (10)0.0511 (9)0.0506 (16)0.0023 (7)0.0040 (9)0.0047 (8)
Cl40.1136 (16)0.0354 (8)0.0909 (19)0.0001 (9)0.0004 (13)0.0092 (9)
N10.067 (3)0.039 (3)0.063 (5)0.003 (2)0.004 (3)0.008 (3)
C10.036 (3)0.033 (3)0.056 (6)0.003 (2)0.012 (3)0.003 (3)
C30.047 (3)0.036 (3)0.063 (6)0.000 (2)0.001 (3)0.004 (3)
C40.048 (3)0.052 (3)0.057 (6)0.001 (3)0.001 (3)0.004 (3)
C20.037 (3)0.041 (3)0.046 (5)0.004 (2)0.012 (3)0.001 (3)
C50.047 (3)0.033 (3)0.076 (6)0.001 (2)0.011 (3)0.005 (3)
C90.066 (4)0.056 (4)0.064 (7)0.008 (3)0.006 (4)0.012 (4)
C80.053 (3)0.042 (3)0.063 (6)0.005 (3)0.000 (4)0.008 (3)
C70.101 (7)0.075 (5)0.077 (8)0.001 (5)0.014 (6)0.001 (5)
N20.075 (4)0.054 (3)0.041 (5)0.004 (3)0.005 (3)0.008 (3)
C100.060 (4)0.047 (3)0.029 (5)0.006 (3)0.000 (3)0.001 (3)
C130.057 (4)0.053 (3)0.033 (6)0.003 (3)0.004 (3)0.001 (3)
C110.058 (4)0.069 (4)0.058 (7)0.013 (3)0.003 (4)0.000 (4)
C140.068 (5)0.109 (7)0.067 (8)0.026 (5)0.002 (5)0.002 (5)
C120.067 (4)0.087 (5)0.042 (7)0.006 (4)0.012 (4)0.002 (4)
C160.075 (5)0.076 (5)0.034 (6)0.009 (4)0.001 (4)0.009 (4)
C150.068 (5)0.065 (4)0.051 (7)0.006 (3)0.008 (4)0.007 (4)
C170.085 (6)0.195 (13)0.082 (9)0.028 (7)0.020 (6)0.011 (8)
Zn10.0383 (4)0.0382 (4)0.0481 (8)0.0011 (3)0.0007 (3)0.0031 (3)
Geometric parameters (Å, º) top
Zn1—Cl12.248 (2)C7—H7B0.9600
Zn1—Cl22.2502 (16)C7—H7C0.9600
Zn1—Cl32.274 (2)N2—C101.463 (9)
Zn1—Cl42.2721 (18)N2—H2A0.8900
N1—C11.468 (8)N2—H2B0.8900
N1—H1A0.8900N2—H2C0.8900
N1—H1B0.8900C10—C111.379 (10)
N1—H1C0.8900C10—C131.388 (9)
C1—C31.364 (10)C13—C151.382 (11)
C1—C21.399 (8)C13—C141.491 (11)
C3—C41.386 (9)C11—C121.396 (11)
C3—H30.9300C11—H110.9300
C4—C81.377 (9)C14—H14A0.9600
C4—C71.512 (11)C14—H14B0.9600
C2—C51.400 (9)C14—H14C0.9600
C2—C91.495 (10)C12—C161.388 (11)
C5—C81.376 (10)C12—C171.503 (13)
C5—H50.9300C16—C151.343 (12)
C9—H9A0.9600C16—H160.9300
C9—H9B0.9600C15—H150.9300
C9—H9C0.9600C17—H17A0.9600
C8—H80.9300C17—H17B0.9600
C7—H7A0.9600C17—H17C0.9600
C1—N1—H1A109.5C10—N2—H2C109.5
C1—N1—H1B109.5H2A—N2—H2C109.5
H1A—N1—H1B109.5H2B—N2—H2C109.5
C1—N1—H1C109.5C11—C10—C13122.2 (7)
H1A—N1—H1C109.5C11—C10—N2118.4 (6)
H1B—N1—H1C109.5C13—C10—N2119.5 (6)
C3—C1—C2123.0 (6)C15—C13—C10115.9 (7)
C3—C1—N1118.8 (5)C15—C13—C14121.2 (7)
C2—C1—N1118.2 (6)C10—C13—C14122.9 (7)
C1—C3—C4121.0 (6)C10—C11—C12120.5 (7)
C1—C3—H3119.5C10—C11—H11119.8
C4—C3—H3119.5C12—C11—H11119.8
C8—C4—C3117.4 (7)C13—C14—H14A109.5
C8—C4—C7121.2 (7)C13—C14—H14B109.5
C3—C4—C7121.3 (7)H14A—C14—H14B109.5
C1—C2—C5115.0 (6)C13—C14—H14C109.5
C1—C2—C9122.5 (6)H14A—C14—H14C109.5
C5—C2—C9122.5 (6)H14B—C14—H14C109.5
C8—C5—C2122.0 (6)C16—C12—C11116.7 (7)
C8—C5—H5119.0C16—C12—C17122.3 (9)
C2—C5—H5119.0C11—C12—C17121.0 (8)
C2—C9—H9A109.5C15—C16—C12121.8 (8)
C2—C9—H9B109.5C15—C16—H16119.1
H9A—C9—H9B109.5C12—C16—H16119.1
C2—C9—H9C109.5C16—C15—C13122.9 (7)
H9A—C9—H9C109.5C16—C15—H15118.5
H9B—C9—H9C109.5C13—C15—H15118.5
C5—C8—C4121.6 (6)C12—C17—H17A109.5
C5—C8—H8119.2C12—C17—H17B109.5
C4—C8—H8119.2H17A—C17—H17B109.5
C4—C7—H7A109.5C12—C17—H17C109.5
C4—C7—H7B109.5H17A—C17—H17C109.5
H7A—C7—H7B109.5H17B—C17—H17C109.5
C4—C7—H7C109.5Cl1—Zn1—Cl2112.46 (8)
H7A—C7—H7C109.5Cl1—Zn1—Cl4110.87 (9)
H7B—C7—H7C109.5Cl2—Zn1—Cl4106.13 (8)
C10—N2—H2A109.5Cl1—Zn1—Cl3109.26 (8)
C10—N2—H2B109.5Cl2—Zn1—Cl3109.42 (7)
H2A—N2—H2B109.5Cl4—Zn1—Cl3108.59 (9)
C2—C1—C3—C40.1 (9)C11—C10—C13—C151.3 (10)
N1—C1—C3—C4179.4 (6)N2—C10—C13—C15179.2 (6)
C1—C3—C4—C80.4 (10)C11—C10—C13—C14178.8 (7)
C1—C3—C4—C7179.8 (7)N2—C10—C13—C140.7 (10)
C3—C1—C2—C50.1 (8)C13—C10—C11—C120.7 (11)
N1—C1—C2—C5179.3 (5)N2—C10—C11—C12179.7 (6)
C3—C1—C2—C9180.0 (6)C10—C11—C12—C161.0 (11)
N1—C1—C2—C90.6 (9)C10—C11—C12—C17180.0 (9)
C1—C2—C5—C80.3 (9)C11—C12—C16—C152.2 (12)
C9—C2—C5—C8179.6 (6)C17—C12—C16—C15178.7 (9)
C2—C5—C8—C40.8 (10)C12—C16—C15—C131.8 (12)
C3—C4—C8—C50.8 (10)C10—C13—C15—C160.0 (11)
C7—C4—C8—C5179.8 (7)C14—C13—C15—C16179.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.892.253.125 (6)169
N1—H1B···Cl3ii0.892.543.304 (6)145
N1—H1C···Cl2iii0.892.313.172 (7)162
N2—H2A···Cl1i0.892.343.219 (6)171
N2—H2B···Cl4iv0.892.703.505 (7)151
N2—H2C···Cl3ii0.892.393.262 (6)168
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formula(C8H12N)2[ZnCl4]
Mr451.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.425 (2), 12.884 (2), 22.809 (2)
β (°) 96.16 (2)
V3)2169.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.20 × 0.13 × 0.10
Data collection
DiffractometerEnraf–Nonius Turbo CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6539, 3947, 2621
Rint0.033
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.229, 1.05
No. of reflections3947
No. of parameters214
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.50, 0.61

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn1—Cl12.248 (2)Zn1—Cl32.274 (2)
Zn1—Cl22.2502 (16)Zn1—Cl42.2721 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl4i0.892.253.125 (6)169
N1—H1B···Cl3ii0.892.543.304 (6)145
N1—H1C···Cl2iii0.892.313.172 (7)162
N2—H2A···Cl1i0.892.343.219 (6)171
N2—H2B···Cl4iv0.892.703.505 (7)151
N2—H2C···Cl3ii0.892.393.262 (6)168
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x1, y+1, z.
 

References

First citationBringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTao, J., Yin, X., Jiang, Y. B., Yang, L. F., Huang, R. B. & Zheng, L. S. (2003). Eur. J. Inorg. Chem. pp. 2678–2682.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds