organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Fluoro­phen­yl)-5-(4-meth­oxy­phen­yl)pyrazolidin-3-one

aNantong Jiangshan Agrochemical & Chemicals Co Ltd, Nantong 226006, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 25 February 2009; accepted 26 February 2009; online 6 March 2009)

In the mol­ecule of the title compound, C16H15FN2O2, the benzene rings are oriented at a dihedral angle of 88.61 (3)°. The five-membered ring adopts an envelope conformation. Intra­molecular C—H⋯N hydrogen bonds result in the formation of two planar five-membered rings. In the crystal structure, inter­molecular N—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules, forming R22(8) and R22(18) ring motifs. Weak C—H⋯π inter­actions may further stabilize the structure.

Related literature

For applications of pyrazolidin-3-one, see: Prakash et al. (2008[Prakash, O., Kumar, R. & Parkash, V. (2008). Eur. J. Med. Chem. 43, 435-440.]); Nonaka (2003[Nonaka, N. (2003). Agrochem. Jpn, 83, 17-19.]); Mabuchi & Ohtsuka (1999[Mabuchi, T. & Ohtsuka, T. (1999). Agrochem. Jpn, 75, 12-14.]). For a related structure, see: Liu et al. (2008[Liu, Y.-Y., Wu, Z.-Y., Shi, H., Chu, Q.-Y. & Zhu, H.-J. (2008). Acta Cryst. E64, o2101.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15FN2O2

  • Mr = 286.30

  • Monoclinic, P 21 /c

  • a = 11.455 (2) Å

  • b = 7.1590 (14) Å

  • c = 18.136 (4) Å

  • β = 101.05 (3)°

  • V = 1459.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.4 × 0.4 × 0.3 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.969, Tmax = 0.991

  • 2991 measured reflections

  • 2844 independent reflections

  • 1869 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.164

  • S = 1.01

  • 2844 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 1.98 2.838 (2) 175
C5—H5A⋯N2 0.93 2.43 2.747 (3) 100
C8—H8A⋯Fii 0.97 2.45 3.388 (3) 164
C11—H11A⋯N1 0.93 2.53 2.885 (3) 103
C2—H2BCg2iii 0.93 2.71 3.589 (3) 157
C15—H15ACg1iv 0.93 2.89 3.801 (3) 167
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z. Cg1 and Cg2 are centroids of the C1–C6 andC10–C15 rings, respectively.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Nowadays, pyrazolidin-3-one and its derivatives used as pesticide have been developed most quickly, such as antiseptic (Prakash et al., 2008), insecticide (Nonaka, 2003) and herbicide (Mabuchi & Ohtsuka, 1999). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and C (C10-C15) are, of course, planar, and they are oriented at a dihedral angle of 88.61 (3)°. The five-membered ring B (N1/N2/C7-C9) adopts envelope conformation with C7 atom displaced by 0.363 (3) Å from the plane of the other ring atoms. The intramolecular C-H···N hydrogen bonds (Table 1) results in the formations of two planar five-membered rings D (N1/N2/C4/C5/H5A) and E (N1/C7/C10/C11/H11A), in which they are oriented with respect to the adjacent rings at dihedral angles of A/D = 4.87 (3) and C/E = 0.86 (3)°. So, rings C and E are coplanar, while A and D are nearly coplanar.

In the crystal structure, intermolecular N-H···O and C-H···F hydrogen bonds (Table 2) link the molecules (Fig. 2) by forming the R22(8) and R22(18) ring motifs (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The weak C—H···π interactions (Table 1) may further stabilize the structure.

Related literature top

For general background, see: Prakash et al. (2008); Nonaka (2003); Mabuchi & Ohtsuka (1999). For a related structure, see: Liu et al. (2008). For bond-length data, see: Allen et al. (1987). For ring motifs, see: Bernstein et al. (1995). Cg1 and Cg2 are centroids of the C1–C6 andC10–C15 rings, respectively.

Experimental top

The title compound was prepared according to the literature method (Liu et al., 2008). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (1.5 g) in ethyl acetate (25 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-(4-Fluorophenyl)-5-(4-methoxyphenyl)pyrazolidin-3-one top
Crystal data top
C16H15FN2O2F(000) = 600
Mr = 286.30Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.455 (2) Åθ = 10–13°
b = 7.1590 (14) ŵ = 0.10 mm1
c = 18.136 (4) ÅT = 294 K
β = 101.05 (3)°Needle, colorless
V = 1459.7 (5) Å30.4 × 0.4 × 0.3 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1869 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.969, Tmax = 0.991l = 2121
2991 measured reflections3 standard reflections every 120 min
2844 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2844 reflectionsΔρmax = 0.18 e Å3
191 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (5)
Crystal data top
C16H15FN2O2V = 1459.7 (5) Å3
Mr = 286.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.455 (2) ŵ = 0.10 mm1
b = 7.1590 (14) ÅT = 294 K
c = 18.136 (4) Å0.4 × 0.4 × 0.3 mm
β = 101.05 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1869 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.969, Tmax = 0.9913 standard reflections every 120 min
2991 measured reflections intensity decay: none
2844 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
2844 reflectionsΔρmin = 0.18 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48784 (13)0.2552 (2)0.03274 (8)0.0523 (4)
O20.38835 (15)0.1685 (2)0.36578 (8)0.0597 (5)
N10.26509 (14)0.3997 (2)0.11625 (9)0.0405 (4)
N20.37005 (14)0.4183 (2)0.06107 (10)0.0468 (5)
H2A0.41160.51920.05560.056*
F0.11183 (16)0.8402 (3)0.07221 (14)0.1260 (8)
C10.0185 (2)0.7276 (4)0.08105 (18)0.0724 (8)
C20.0298 (2)0.6229 (4)0.14437 (16)0.0694 (8)
H2B0.09960.62470.18030.083*
C30.0654 (2)0.5135 (3)0.15406 (13)0.0541 (6)
H3A0.06030.44240.19750.065*
C40.16815 (17)0.5086 (2)0.09998 (11)0.0393 (5)
C50.1755 (2)0.6150 (3)0.03597 (12)0.0525 (6)
H5A0.24430.61220.00090.063*
C60.0806 (2)0.7261 (4)0.02653 (17)0.0723 (8)
H6A0.08480.79850.01650.087*
C70.24222 (18)0.1930 (3)0.12010 (11)0.0393 (5)
H7A0.15690.17090.12370.047*
C80.30920 (19)0.1193 (3)0.04418 (10)0.0436 (5)
H8A0.25590.10400.00900.052*
H8B0.34720.00060.05010.052*
C90.39987 (18)0.2682 (3)0.01826 (11)0.0416 (5)
C100.28206 (17)0.1019 (3)0.18638 (10)0.0391 (5)
C110.33591 (18)0.1959 (3)0.23771 (11)0.0443 (5)
H11A0.34900.32380.23230.053*
C120.3703 (2)0.1032 (3)0.29659 (11)0.0486 (5)
H12A0.40690.16870.33020.058*
C130.35087 (19)0.0874 (3)0.30603 (10)0.0455 (5)
C140.2963 (2)0.1830 (3)0.25569 (13)0.0592 (7)
H14A0.28250.31070.26130.071*
C150.2625 (2)0.0876 (3)0.19703 (12)0.0560 (6)
H15A0.22540.15290.16360.067*
C160.3801 (2)0.3669 (4)0.37188 (14)0.0655 (7)
H16A0.40840.40690.41580.098*
H16B0.29870.40440.37580.098*
H16C0.42760.42300.32810.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0529 (9)0.0421 (9)0.0565 (9)0.0060 (7)0.0034 (7)0.0017 (7)
O20.0751 (11)0.0584 (11)0.0486 (9)0.0018 (8)0.0194 (8)0.0099 (7)
N10.0387 (9)0.0295 (9)0.0521 (10)0.0020 (7)0.0053 (7)0.0001 (7)
N20.0361 (9)0.0319 (9)0.0678 (11)0.0014 (7)0.0017 (8)0.0030 (8)
F0.0732 (12)0.1078 (16)0.200 (2)0.0392 (11)0.0325 (13)0.0413 (15)
C10.0470 (14)0.0575 (16)0.114 (2)0.0138 (12)0.0199 (15)0.0134 (15)
C20.0464 (14)0.0637 (17)0.0911 (19)0.0095 (12)0.0040 (13)0.0011 (15)
C30.0482 (13)0.0478 (13)0.0622 (14)0.0055 (10)0.0001 (10)0.0054 (11)
C40.0425 (11)0.0267 (10)0.0486 (11)0.0025 (8)0.0082 (9)0.0043 (8)
C50.0536 (13)0.0472 (13)0.0551 (13)0.0021 (10)0.0069 (10)0.0084 (10)
C60.0711 (18)0.0606 (17)0.0880 (19)0.0055 (13)0.0226 (15)0.0289 (14)
C70.0399 (10)0.0281 (10)0.0501 (11)0.0005 (8)0.0090 (9)0.0009 (8)
C80.0552 (13)0.0344 (11)0.0425 (11)0.0020 (9)0.0131 (9)0.0010 (9)
C90.0455 (11)0.0328 (11)0.0476 (11)0.0064 (9)0.0122 (9)0.0014 (9)
C100.0441 (11)0.0322 (10)0.0395 (10)0.0001 (8)0.0044 (8)0.0022 (8)
C110.0478 (12)0.0341 (10)0.0495 (12)0.0044 (9)0.0060 (9)0.0027 (9)
C120.0550 (13)0.0484 (13)0.0434 (11)0.0081 (10)0.0120 (10)0.0032 (9)
C130.0501 (12)0.0479 (13)0.0365 (10)0.0015 (10)0.0032 (9)0.0026 (9)
C140.0896 (19)0.0362 (12)0.0557 (13)0.0053 (12)0.0238 (13)0.0048 (10)
C150.0857 (17)0.0367 (12)0.0518 (12)0.0080 (11)0.0287 (12)0.0011 (9)
C160.0717 (16)0.0648 (16)0.0614 (14)0.0109 (13)0.0162 (12)0.0278 (13)
Geometric parameters (Å, º) top
O1—C91.234 (2)C7—C81.536 (3)
O2—C131.369 (2)C7—C101.513 (3)
O2—C161.427 (3)C7—H7A0.9800
N1—N21.415 (2)C8—H8A0.9700
N1—C41.433 (2)C8—H8B0.9700
N1—C71.502 (2)C9—C81.500 (3)
N2—C91.331 (2)C10—C151.382 (3)
N2—H2A0.8600C11—C101.386 (3)
F—C11.372 (3)C11—C121.378 (3)
C2—C11.357 (4)C11—H11A0.9300
C2—H2B0.9300C12—C131.388 (3)
C3—C21.380 (3)C12—H12A0.9300
C3—H3A0.9300C13—C141.382 (3)
C4—C31.381 (3)C14—C151.381 (3)
C4—C51.378 (3)C14—H14A0.9300
C5—C61.384 (3)C15—H15A0.9300
C5—H5A0.9300C16—H16A0.9600
C6—C11.356 (4)C16—H16B0.9600
C6—H6A0.9300C16—H16C0.9600
C13—O2—C16117.22 (18)C7—C8—H8B111.1
N2—N1—C4112.97 (15)C9—C8—C7103.53 (16)
N2—N1—C7104.02 (14)C9—C8—H8A111.1
C4—N1—C7114.23 (15)C9—C8—H8B111.1
N1—N2—H2A122.4H8A—C8—H8B109.0
C9—N2—N1115.13 (16)O1—C9—N2125.42 (19)
C9—N2—H2A122.4O1—C9—C8126.75 (18)
C2—C1—F118.3 (3)N2—C9—C8107.82 (17)
C6—C1—F118.8 (3)C15—C10—C11117.64 (19)
C6—C1—C2122.9 (2)C15—C10—C7117.95 (18)
C1—C2—C3118.2 (2)C11—C10—C7124.40 (18)
C1—C2—H2B120.9C10—C11—H11A119.4
C3—C2—H2B120.9C12—C11—C10121.1 (2)
C2—C3—C4120.7 (2)C12—C11—H11A119.4
C2—C3—H3A119.7C11—C12—C13120.42 (19)
C4—C3—H3A119.7C11—C12—H12A119.8
C3—C4—N1117.15 (18)C13—C12—H12A119.8
C5—C4—N1123.33 (18)O2—C13—C14124.3 (2)
C5—C4—C3119.40 (19)O2—C13—C12116.56 (19)
C4—C5—C6120.0 (2)C14—C13—C12119.17 (19)
C4—C5—H5A120.0C15—C14—C13119.6 (2)
C6—C5—H5A120.0C15—C14—H14A120.2
C1—C6—C5118.9 (2)C13—C14—H14A120.2
C1—C6—H6A120.6C10—C15—H15A119.0
C5—C6—H6A120.6C14—C15—C10122.1 (2)
N1—C7—C8104.13 (15)C14—C15—H15A119.0
N1—C7—C10112.66 (16)O2—C16—H16A109.5
N1—C7—H7A109.0O2—C16—H16B109.5
C8—C7—H7A109.0O2—C16—H16C109.5
C10—C7—C8112.90 (16)H16A—C16—H16B109.5
C10—C7—H7A109.0H16A—C16—H16C109.5
C7—C8—H8A111.1H16B—C16—H16C109.5
C4—N1—N2—C9109.31 (19)C4—C5—C6—C10.1 (4)
C7—N1—N2—C915.1 (2)C5—C6—C1—C20.8 (5)
N2—N1—C4—C3174.02 (17)C5—C6—C1—F178.9 (3)
N2—N1—C4—C52.1 (3)N1—C7—C8—C921.70 (19)
C7—N1—C4—C367.3 (2)C10—C7—C8—C9100.83 (19)
C7—N1—C4—C5116.5 (2)N1—C7—C10—C111.1 (3)
N2—N1—C7—C822.13 (18)N1—C7—C10—C15178.22 (19)
N2—N1—C7—C10100.56 (17)C8—C7—C10—C11116.5 (2)
C4—N1—C7—C8101.47 (18)C8—C7—C10—C1564.2 (2)
C4—N1—C7—C10135.84 (17)O1—C9—C8—C7165.5 (2)
N1—N2—C9—O1179.81 (18)N2—C9—C8—C713.5 (2)
N1—N2—C9—C80.8 (2)C7—C10—C15—C14179.7 (2)
C16—O2—C13—C12173.8 (2)C11—C10—C15—C140.9 (3)
C16—O2—C13—C146.0 (3)C12—C11—C10—C7179.69 (19)
C3—C2—C1—C61.5 (4)C12—C11—C10—C151.0 (3)
C3—C2—C1—F178.3 (3)C10—C11—C12—C130.5 (3)
C4—C3—C2—C11.2 (4)C11—C12—C13—O2179.71 (19)
N1—C4—C3—C2176.6 (2)C11—C12—C13—C140.1 (3)
C5—C4—C3—C20.4 (3)O2—C13—C14—C15179.7 (2)
N1—C4—C5—C6175.7 (2)C12—C13—C14—C150.1 (4)
C3—C4—C5—C60.3 (3)C13—C14—C15—C100.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.982.838 (2)175
C5—H5A···N20.932.432.747 (3)100
C8—H8A···Fii0.972.453.388 (3)164
C11—H11A···N10.932.532.885 (3)103
C2—H2B···Cg2iii0.932.713.589 (3)157
C15—H15A···Cg1iv0.932.893.801 (3)167
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H15FN2O2
Mr286.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.455 (2), 7.1590 (14), 18.136 (4)
β (°) 101.05 (3)
V3)1459.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.4 × 0.4 × 0.3
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2991, 2844, 1869
Rint0.023
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.164, 1.01
No. of reflections2844
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.982.838 (2)175
C5—H5A···N20.932.432.747 (3)100
C8—H8A···Fii0.972.453.388 (3)164
C11—H11A···N10.932.532.885 (3)103
C2—H2B···Cg2iii0.932.713.589 (3)157
C15—H15A···Cg1iv0.932.893.801 (3)167
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y1/2, z+1/2; (iv) x, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, Y.-Y., Wu, Z.-Y., Shi, H., Chu, Q.-Y. & Zhu, H.-J. (2008). Acta Cryst. E64, o2101.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMabuchi, T. & Ohtsuka, T. (1999). Agrochem. Jpn, 75, 12–14.  CAS Google Scholar
First citationNonaka, N. (2003). Agrochem. Jpn, 83, 17–19.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPrakash, O., Kumar, R. & Parkash, V. (2008). Eur. J. Med. Chem. 43, 435–440.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds