organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7α-Meth­oxy­carbonyl-6,7,8,14-tetra­hydro-6,14-endo-ethenothebaine

aChemistry Program, Denizli Higher Vocational School, Pamukkale University, TR-20159 Kınıklı, Denizli, Turkey, bDepartment of Chemistry, Faculty of Arts and Science, Gazi University, Ankara, Turkey, and cDepartment of Physics, Faculty of Arts and Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 26 February 2009; accepted 13 March 2009; online 25 March 2009)

In the mol­ecule of the title compound, C23H27NO5, the furan ring adopts an envelope conformation. Intra­molecular C—H⋯O inter­actions result in the formation of S(5) and S(6) motifs. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules through C(6) and C(8) chains along the [100] and [010] directions, generating a two-dimensional network.

Related literature

For general background, see: Casy & Parfitt (1986[Casy, A. F. & Parfitt, R. T. (1986). Opioid Analgesics. Chemistry and Receptors, pp. 333-384. New York, London: Plenum Press.]); Lenz et al. (1986[Lenz, G. R., Evans, S. M., Walters, D. E. & Hopfinger, A. J. (1986). Opiates, p. 65. London: Academic Press.]); Schmidhammer, (1998[Schmidhammer, H. (1998). Prog. Med. Chem. 35, 83-88.]); Maat et al. (1999[Maat, L., Woudenberg, R. H., Meuzelaar, G. J. & Linders, J. T. (1999). Bioorg. Med. Chem. 7, 529-541.]); Lewis (1985[Lewis, J. W. (1985). Drug Alcohol Depend. 14, 363-372.]). For a related structure, see: Bentley & Hardy (1967[Bentley, K. W. & Hardy, D. G. (1967). J. Am. Chem. Soc. 89, 3267-3273.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C23H27NO5

  • Mr = 397.46

  • Orthorhombic, P 21 21 21

  • a = 6.5604 (2) Å

  • b = 10.4082 (3) Å

  • c = 29.1382 (11) Å

  • V = 1989.61 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.39 × 0.35 × 0.31 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.966, Tmax = 0.984

  • 27330 measured reflections

  • 2467 independent reflections

  • 2300 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.06

  • 2467 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2 0.96 2.34 3.002 (3) 125
C12—H12B⋯O4 0.97 2.46 2.899 (2) 107
C15—H15⋯O4i 0.98 2.53 3.483 (2) 165
C17—H17C⋯O2ii 0.96 2.62 3.533 (3) 158
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Morphine alkaloids and related semisynthetic derivatives are the most important groups of non-endogenous opioid-receptor ligands. They can possess both agonist and antagonist properties. Thus, some of them are used as effective analgesics for the treatment of moderate to severe pain or as opioid antagonists for the treatment of narcotic overdosage or opioid addiction; others are used as intermediate products in research (Casy & Parfitt, 1986; Lenz et al., 1986; Schmidhammer, 1998).

Thebaine readily undergoes Diels–Alder reactions with various dienophiles to give the adducts. The diene system of thebaine could potentially be attacked from both faces, but reactions with dienophiles always occur from the same face as the nitrogen bridge (upper face) due to the nitrogen bridge causing the lower face to be hindered through concealment inside a concave system (Maat et al., 1999). The nature of a substituent in positions 7,8 of morphinane alkaloids is among the most important factors affecting their biological activity (Lenz et al., 1986). For instance, the opioid analgesic buprenorphine, ethorphine possesses a pharmacological profile interesting for development of antinarcotics (Lewis, 1985). In view of the importance of the morphine alkaloids, we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings C (C1–C6), D (O2/C5/C6/C11/C15) and E (C4/C5/C8–C11) adopt envelope conformations with C5, C15 and C10 atoms displaced by 0.118 (3), -0.172 (3) and -0.809 (3) Å from the planes of the other ring atoms, respectively. Rings A (N1/C9–C11/C21/C22), B (C10/C12–C14/C19/C20), F (C10–C15) and G (C10/C11/C14/C15/C19/C20) are not planar, having total puckering amplitudes, QT, of 0.604 (2), 0.820 (2), 1.047 (2) and 0.942 Å and chair, boat, boat and boat conformations [ϕ = 78.15 (3) and θ = 9.43 (3)° (for ring A), ϕ = 3.08 (3) and θ = 87.76 (3)° (for ring B), ϕ = 155.88 (3) and θ = 152.64 (3)° (for ring F) and ϕ = -82.44 (3) and θ = 148.46 (3)° (for ring G)] (Cremer & Pople, 1975). The intramolecular C—H···O interactions (Table 1) result in the formations of five- and six-membered rings H (O4/C12/C13/C16/H12B) and I (O1/O2/C1/C6/C7/H7A). Ring H adopts envelope conformation with O4 atom displaced by 0.536 (4) Å from the plane of the other ring atoms, while ring I has twisted conformation. The intramolecular interactions result in the formations of S(5) and S(6) motifs (Bernstein et al., 1995; Etter, 1990) (Fig. 2).

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules through C(6) and C(8) chains (Bernstein et al., 1995; Etter, 1990) nearly along the [100] and [010] directions (Figs. 2 and 3), generating a three-dimensional network (Fig. 4).

Related literature top

For general background, see: Casy & Parfitt (1986); Lenz et al. (1986); Schmidhammer, (1998); Maat et al. (1999); Lewis (1985). For a related structure, see: Bentley & Hardy (1967). For bond-length data, see: Allen et al. (1987). For ring-puckering parameters, see: Cremer & Pople (1975). For ring motifs, see: Bernstein et al. (1995); Etter (1990).

Experimental top

The title compound was prepared according to the literature method (Bentley & Hardy, 1967). Thebaine (1.50 g, 4.82 mmol) and methyl acrylate (2.55 ml, 28.3 mmol) were refluxed in benzene (50 ml) for 8 h. After cooling to room temperature, the reaction mixture was concentrated in vacuo. The mixture was centrifuged, and then the title compound was obtained as colorless prisms. It was washed with cold methanol, and recrystallized from methanol.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The absolute structure could not be determined reliably, and 1795 Friedel pairs were averaged before the last cycle of refinement.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, showing the formation of C(6) chain with S(5) and S(6) motifs along the [100] direction. H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonds are shown as dashed lines [symmetry code: (i) x + 1, y, z].
[Figure 3] Fig. 3. A partial packing diagram of the title compound, showing the formation of C(8) chain along the [010] direction. H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonds are shown as dashed lines [symmetry code: (i) x - 1, y + 1/2, z].
[Figure 4] Fig. 4. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
7α-Methoxycarbonyl-6,7,8,14-tetrahydro-6,14-endo-ethenothebaine top
Crystal data top
C23H27NO5F(000) = 848
Mr = 397.46Dx = 1.327 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 27330 reflections
a = 6.5604 (2) Åθ = 1.4–27.3°
b = 10.4082 (3) ŵ = 0.09 mm1
c = 29.1382 (11) ÅT = 296 K
V = 1989.61 (11) Å3Prism, colourless
Z = 40.39 × 0.35 × 0.31 mm
Data collection top
Stoe IPDS II
diffractometer
2467 independent reflections
Radiation source: fine-focus sealed tube2300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scan rotation methodθmax = 26.8°, θmin = 1.4°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.966, Tmax = 0.984k = 1213
27330 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.2082P]
where P = (Fo2 + 2Fc2)/3
2467 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C23H27NO5V = 1989.61 (11) Å3
Mr = 397.46Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.5604 (2) ŵ = 0.09 mm1
b = 10.4082 (3) ÅT = 296 K
c = 29.1382 (11) Å0.39 × 0.35 × 0.31 mm
Data collection top
Stoe IPDS II
diffractometer
2467 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2300 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.984Rint = 0.037
27330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
2467 reflectionsΔρmin = 0.14 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9853 (3)0.82364 (14)0.58760 (5)0.0549 (4)
O20.9330 (2)0.60075 (12)0.65159 (4)0.0386 (3)
O30.6842 (2)0.59127 (12)0.73570 (4)0.0395 (3)
O40.2507 (2)0.38987 (17)0.74242 (5)0.0535 (4)
O50.4979 (2)0.37509 (14)0.79459 (4)0.0460 (3)
N10.6584 (3)0.16016 (16)0.58745 (5)0.0444 (4)
C10.9098 (3)0.70471 (19)0.57577 (7)0.0435 (5)
C20.8226 (4)0.6904 (2)0.53244 (7)0.0521 (5)
H20.83440.75720.51140.063*
C30.7190 (4)0.5803 (2)0.51963 (6)0.0503 (5)
H30.65600.57660.49110.060*
C40.7078 (3)0.47442 (19)0.54914 (6)0.0415 (4)
C50.8120 (3)0.48664 (17)0.59018 (6)0.0353 (4)
C60.8950 (3)0.60011 (19)0.60527 (6)0.0375 (4)
C71.1676 (5)0.8241 (3)0.61339 (10)0.0721 (7)
H7A1.14640.77900.64170.087*
H7B1.20680.91120.61980.087*
H7C1.27350.78250.59620.087*
C80.5653 (4)0.3625 (2)0.54286 (6)0.0484 (5)
H8A0.61780.30880.51840.058*
H8B0.43410.39530.53300.058*
C90.5316 (3)0.27660 (19)0.58627 (6)0.0410 (4)
H90.38870.24910.58620.049*
C100.5680 (3)0.35311 (17)0.63073 (6)0.0337 (4)
C110.7950 (3)0.39378 (17)0.62929 (6)0.0328 (4)
C120.5280 (3)0.28000 (17)0.67567 (6)0.0385 (4)
H12A0.60250.19950.67550.046*
H12B0.38380.26070.67840.046*
C130.5970 (3)0.36300 (17)0.71682 (6)0.0346 (4)
H130.71510.32250.73150.042*
C140.6587 (3)0.50225 (16)0.69954 (5)0.0325 (4)
C150.8520 (3)0.48032 (16)0.67040 (6)0.0320 (4)
H150.95660.43800.68900.038*
C160.4276 (3)0.37757 (17)0.75171 (6)0.0373 (4)
C170.3443 (4)0.3871 (2)0.82992 (7)0.0582 (6)
H17A0.27330.46710.82620.070*
H17B0.40820.38500.85950.070*
H17C0.24930.31730.82740.070*
C180.8627 (4)0.5760 (2)0.76315 (7)0.0531 (5)
H18A0.86140.49260.77720.064*
H18B0.86520.64090.78650.064*
H18C0.98150.58410.74410.064*
C190.4885 (3)0.54957 (17)0.66960 (6)0.0348 (4)
H190.42010.62610.67540.042*
C200.4425 (3)0.47512 (18)0.63434 (6)0.0366 (4)
H200.34100.49600.61330.044*
C210.9344 (3)0.27647 (18)0.62531 (6)0.0398 (4)
H21A1.07390.30510.62110.048*
H21B0.92820.22770.65360.048*
C220.8753 (3)0.1899 (2)0.58551 (7)0.0478 (5)
H22A0.90640.23240.55670.057*
H22B0.95350.11090.58690.057*
C230.5999 (4)0.0659 (2)0.55288 (8)0.0594 (6)
H23A0.46110.04010.55780.071*
H23B0.68730.00780.55510.071*
H23C0.61270.10320.52290.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0602 (10)0.0446 (7)0.0601 (9)0.0062 (7)0.0022 (8)0.0136 (7)
O20.0409 (7)0.0403 (7)0.0345 (6)0.0067 (6)0.0023 (5)0.0046 (5)
O30.0414 (7)0.0397 (7)0.0374 (6)0.0075 (6)0.0061 (6)0.0074 (5)
O40.0400 (8)0.0721 (10)0.0485 (7)0.0135 (7)0.0066 (6)0.0086 (7)
O50.0502 (8)0.0562 (8)0.0317 (6)0.0020 (7)0.0068 (6)0.0015 (6)
N10.0515 (10)0.0427 (9)0.0390 (8)0.0005 (8)0.0022 (8)0.0086 (7)
C10.0426 (11)0.0426 (10)0.0454 (10)0.0006 (9)0.0052 (8)0.0082 (8)
C20.0590 (13)0.0576 (12)0.0398 (10)0.0047 (12)0.0044 (10)0.0176 (9)
C30.0566 (12)0.0632 (13)0.0310 (8)0.0078 (11)0.0025 (9)0.0083 (8)
C40.0438 (11)0.0509 (11)0.0299 (8)0.0059 (9)0.0008 (8)0.0013 (8)
C50.0328 (9)0.0427 (9)0.0305 (8)0.0023 (8)0.0022 (7)0.0042 (7)
C60.0323 (9)0.0463 (10)0.0338 (8)0.0017 (8)0.0015 (7)0.0046 (7)
C70.0646 (16)0.0618 (15)0.0900 (19)0.0224 (14)0.0152 (15)0.0162 (14)
C80.0557 (12)0.0555 (12)0.0339 (9)0.0004 (11)0.0091 (9)0.0025 (8)
C90.0395 (10)0.0471 (10)0.0363 (9)0.0033 (8)0.0033 (8)0.0044 (8)
C100.0321 (8)0.0382 (9)0.0307 (8)0.0007 (7)0.0004 (7)0.0010 (7)
C110.0330 (9)0.0383 (9)0.0271 (7)0.0032 (7)0.0010 (7)0.0019 (7)
C120.0416 (10)0.0356 (9)0.0384 (9)0.0028 (8)0.0065 (8)0.0018 (7)
C130.0359 (9)0.0366 (9)0.0313 (8)0.0051 (8)0.0026 (7)0.0025 (7)
C140.0361 (9)0.0328 (8)0.0287 (8)0.0028 (7)0.0010 (7)0.0011 (6)
C150.0305 (8)0.0344 (8)0.0311 (8)0.0007 (7)0.0032 (7)0.0034 (7)
C160.0424 (10)0.0347 (9)0.0347 (9)0.0030 (8)0.0044 (8)0.0033 (7)
C170.0666 (15)0.0672 (14)0.0408 (10)0.0003 (13)0.0186 (11)0.0031 (10)
C180.0519 (12)0.0616 (13)0.0457 (10)0.0102 (11)0.0151 (10)0.0155 (9)
C190.0326 (9)0.0346 (8)0.0372 (9)0.0050 (7)0.0003 (7)0.0027 (7)
C200.0296 (9)0.0433 (9)0.0370 (8)0.0018 (8)0.0030 (7)0.0037 (8)
C210.0350 (9)0.0441 (9)0.0403 (9)0.0059 (8)0.0006 (8)0.0020 (8)
C220.0493 (12)0.0492 (11)0.0449 (10)0.0089 (9)0.0036 (9)0.0088 (9)
C230.0730 (16)0.0523 (13)0.0527 (12)0.0053 (12)0.0027 (12)0.0173 (10)
Geometric parameters (Å, º) top
C1—O11.377 (3)C13—C141.587 (2)
C1—C61.390 (3)C13—H130.9800
C1—C21.394 (3)C14—O31.413 (2)
C2—C31.383 (3)C14—C191.500 (2)
C2—H20.9300C14—C151.542 (2)
C3—C41.400 (3)C15—O21.468 (2)
C3—H30.9300C15—H150.9800
C4—C51.383 (2)C16—O41.199 (2)
C4—C81.505 (3)C16—O51.332 (2)
C5—C61.373 (3)C17—O51.446 (2)
C5—C111.499 (2)C17—H17A0.9600
C6—O21.373 (2)C17—H17B0.9600
C7—O11.412 (3)C17—H17C0.9600
C7—H7A0.9600C18—O31.427 (2)
C7—H7B0.9600C18—H18A0.9600
C7—H7C0.9600C18—H18B0.9600
C8—C91.565 (3)C18—H18C0.9600
C8—H8A0.9700C19—C201.322 (3)
C8—H8B0.9700C19—H190.9300
C9—N11.470 (3)C20—H200.9300
C9—C101.539 (2)C21—C221.519 (3)
C9—H90.9800C21—H21A0.9700
C10—C201.517 (2)C21—H21B0.9700
C10—C121.537 (2)C22—N11.457 (3)
C10—C111.549 (3)C22—H22A0.9700
C11—C211.530 (2)C22—H22B0.9700
C11—C151.545 (2)C23—N11.458 (3)
C12—C131.546 (2)C23—H23A0.9600
C12—H12A0.9700C23—H23B0.9600
C12—H12B0.9700C23—H23C0.9600
C13—C161.514 (2)
O1—C1—C6125.05 (18)C14—C13—H13109.3
O1—C1—C2118.06 (18)O3—C14—C19107.84 (14)
C6—C1—C2116.58 (19)O3—C14—C15114.23 (15)
C3—C2—C1122.32 (18)C19—C14—C15109.89 (13)
C3—C2—H2118.8O3—C14—C13113.10 (13)
C1—C2—H2118.8C19—C14—C13107.12 (15)
C2—C3—C4120.79 (18)C15—C14—C13104.43 (13)
C2—C3—H3119.6O2—C15—C14112.14 (13)
C4—C3—H3119.6O2—C15—C11107.22 (13)
C5—C4—C3115.65 (19)C14—C15—C11108.33 (14)
C5—C4—C8118.90 (16)O2—C15—H15109.7
C3—C4—C8124.56 (17)C14—C15—H15109.7
C6—C5—C4123.50 (17)C11—C15—H15109.7
C6—C5—C11109.92 (15)O4—C16—O5123.30 (18)
C4—C5—C11124.16 (17)O4—C16—C13124.74 (17)
O2—C6—C5113.03 (16)O5—C16—C13111.95 (16)
O2—C6—C1126.25 (18)O5—C17—H17A109.5
C5—C6—C1120.22 (17)O5—C17—H17B109.5
O1—C7—H7A109.5H17A—C17—H17B109.5
O1—C7—H7B109.5O5—C17—H17C109.5
H7A—C7—H7B109.5H17A—C17—H17C109.5
O1—C7—H7C109.5H17B—C17—H17C109.5
H7A—C7—H7C109.5O3—C18—H18A109.5
H7B—C7—H7C109.5O3—C18—H18B109.5
C4—C8—C9115.59 (15)H18A—C18—H18B109.5
C4—C8—H8A108.4O3—C18—H18C109.5
C9—C8—H8A108.4H18A—C18—H18C109.5
C4—C8—H8B108.4H18B—C18—H18C109.5
C9—C8—H8B108.4C20—C19—C14115.44 (16)
H8A—C8—H8B107.4C20—C19—H19122.3
N1—C9—C10108.61 (15)C14—C19—H19122.3
N1—C9—C8114.22 (17)C19—C20—C10114.87 (16)
C10—C9—C8111.27 (15)C19—C20—H20122.6
N1—C9—H9107.5C10—C20—H20122.6
C10—C9—H9107.5C22—C21—C11112.26 (16)
C8—C9—H9107.5C22—C21—H21A109.2
C20—C10—C12105.24 (14)C11—C21—H21A109.2
C20—C10—C9114.03 (15)C22—C21—H21B109.2
C12—C10—C9115.75 (15)C11—C21—H21B109.2
C20—C10—C11107.15 (14)H21A—C21—H21B107.9
C12—C10—C11108.81 (15)N1—C22—C21110.23 (17)
C9—C10—C11105.52 (15)N1—C22—H22A109.6
C5—C11—C21114.36 (15)C21—C22—H22A109.6
C5—C11—C15101.29 (14)N1—C22—H22B109.6
C21—C11—C15112.32 (14)C21—C22—H22B109.6
C5—C11—C10105.56 (14)H22A—C22—H22B108.1
C21—C11—C10111.03 (15)N1—C23—H23A109.5
C15—C11—C10111.77 (14)N1—C23—H23B109.5
C10—C12—C13109.52 (14)H23A—C23—H23B109.5
C10—C12—H12A109.8N1—C23—H23C109.5
C13—C12—H12A109.8H23A—C23—H23C109.5
C10—C12—H12B109.8H23B—C23—H23C109.5
C13—C12—H12B109.8C22—N1—C23111.90 (18)
H12A—C12—H12B108.2C22—N1—C9112.11 (17)
C16—C13—C12111.21 (16)C23—N1—C9112.95 (17)
C16—C13—C14107.99 (14)C1—O1—C7116.17 (18)
C12—C13—C14109.82 (13)C6—O2—C15107.29 (14)
C16—C13—H13109.3C14—O3—C18116.21 (15)
C12—C13—H13109.3C16—O5—C17115.13 (17)
O1—C1—C2—C3171.3 (2)C16—C13—C14—C1972.07 (17)
C6—C1—C2—C32.5 (3)C12—C13—C14—C1949.36 (19)
C1—C2—C3—C43.8 (4)C16—C13—C14—C15171.38 (14)
C2—C3—C4—C52.2 (3)C12—C13—C14—C1567.18 (17)
C2—C3—C4—C8166.8 (2)O3—C14—C15—O255.46 (18)
C3—C4—C5—C610.0 (3)C19—C14—C15—O265.87 (18)
C8—C4—C5—C6159.66 (19)C13—C14—C15—O2179.52 (13)
C3—C4—C5—C11170.57 (18)O3—C14—C15—C11173.59 (13)
C8—C4—C5—C110.9 (3)C19—C14—C15—C1152.26 (18)
C4—C5—C6—O2160.73 (17)C13—C14—C15—C1162.35 (16)
C11—C5—C6—O22.2 (2)C5—C11—C15—O210.94 (17)
C4—C5—C6—C111.7 (3)C21—C11—C15—O2111.52 (16)
C11—C5—C6—C1174.64 (17)C10—C11—C15—O2122.92 (14)
O1—C1—C6—O26.9 (3)C5—C11—C15—C14110.28 (15)
C2—C1—C6—O2166.41 (19)C21—C11—C15—C14127.26 (15)
O1—C1—C6—C5178.25 (19)C10—C11—C15—C141.70 (18)
C2—C1—C6—C54.9 (3)C12—C13—C16—O437.8 (3)
C5—C4—C8—C96.1 (3)C14—C13—C16—O482.8 (2)
C3—C4—C8—C9162.6 (2)C12—C13—C16—O5142.17 (16)
C4—C8—C9—N197.5 (2)C14—C13—C16—O597.26 (17)
C4—C8—C9—C1025.9 (3)O3—C14—C19—C20178.76 (16)
N1—C9—C10—C20178.89 (16)C15—C14—C19—C2056.2 (2)
C8—C9—C10—C2054.6 (2)C13—C14—C19—C2056.72 (19)
N1—C9—C10—C1256.6 (2)C14—C19—C20—C101.0 (2)
C8—C9—C10—C12176.87 (18)C12—C10—C20—C1959.6 (2)
N1—C9—C10—C1163.79 (18)C9—C10—C20—C19172.53 (17)
C8—C9—C10—C1162.8 (2)C11—C10—C20—C1956.2 (2)
C6—C5—C11—C21112.91 (18)C5—C11—C21—C2266.6 (2)
C4—C5—C11—C2184.3 (2)C15—C11—C21—C22178.70 (16)
C6—C5—C11—C158.13 (19)C10—C11—C21—C2252.7 (2)
C4—C5—C11—C15154.69 (18)C11—C21—C22—N150.8 (2)
C6—C5—C11—C10124.75 (16)C21—C22—N1—C23173.61 (17)
C4—C5—C11—C1038.1 (2)C21—C22—N1—C958.3 (2)
C20—C10—C11—C555.15 (18)C10—C9—N1—C2266.6 (2)
C12—C10—C11—C5168.46 (14)C8—C9—N1—C2258.2 (2)
C9—C10—C11—C566.73 (17)C10—C9—N1—C23165.85 (17)
C20—C10—C11—C21179.60 (13)C8—C9—N1—C2369.3 (2)
C12—C10—C11—C2167.09 (18)C6—C1—O1—C745.0 (3)
C9—C10—C11—C2157.73 (18)C2—C1—O1—C7141.8 (2)
C20—C10—C11—C1554.12 (18)C5—C6—O2—C155.3 (2)
C12—C10—C11—C1559.19 (17)C1—C6—O2—C15166.61 (18)
C9—C10—C11—C15175.99 (14)C14—C15—O2—C6108.49 (15)
C20—C10—C12—C1360.31 (19)C11—C15—O2—C610.29 (18)
C9—C10—C12—C13172.82 (16)C19—C14—O3—C18168.91 (17)
C11—C10—C12—C1354.25 (19)C15—C14—O3—C1846.5 (2)
C10—C12—C13—C16126.85 (16)C13—C14—O3—C1872.8 (2)
C10—C12—C13—C147.4 (2)O4—C16—O5—C170.6 (3)
C16—C13—C14—O346.6 (2)C13—C16—O5—C17179.37 (16)
C12—C13—C14—O3168.04 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.962.343.002 (3)125
C12—H12B···O40.972.462.899 (2)107
C15—H15···O4i0.982.533.483 (2)165
C17—H17C···O2ii0.962.623.533 (3)158
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC23H27NO5
Mr397.46
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.5604 (2), 10.4082 (3), 29.1382 (11)
V3)1989.61 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.35 × 0.31
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.966, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
27330, 2467, 2300
Rint0.037
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.06
No. of reflections2467
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.962.343.002 (3)125.4
C12—H12B···O40.972.462.899 (2)107.2
C15—H15···O4i0.982.533.483 (2)164.7
C17—H17C···O2ii0.962.623.533 (3)158.2
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Scientific and Technical Research Council of Turkey (TUBITAK, Project No. 107 T676). We also thank the Turkish Grain Board (TMO) for the supply of thebaine.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBentley, K. W. & Hardy, D. G. (1967). J. Am. Chem. Soc. 89, 3267–3273.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCasy, A. F. & Parfitt, R. T. (1986). Opioid Analgesics. Chemistry and Receptors, pp. 333–384. New York, London: Plenum Press.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLenz, G. R., Evans, S. M., Walters, D. E. & Hopfinger, A. J. (1986). Opiates, p. 65. London: Academic Press.  Google Scholar
First citationLewis, J. W. (1985). Drug Alcohol Depend. 14, 363–372.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMaat, L., Woudenberg, R. H., Meuzelaar, G. J. & Linders, J. T. (1999). Bioorg. Med. Chem. 7, 529–541.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidhammer, H. (1998). Prog. Med. Chem. 35, 83–88.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds