organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(2-amino-1,3-thia­zol-4-yl)-2-[(Z)-meth­oxy­carbonyl­meth­oxy­imino]ethano­ate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cPharmagen Ltd, Lahore 54000, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 March 2009; accepted 2 March 2009; online 6 March 2009)

In the mol­ecule of the title compound, C9H11N3O5S, the thia­zole ring is oriented at dihedral angles of 87.33 (3) and 87.18 (3)° with respect to the planar (r.m.s. deviations 0.0136 and 0.0139 Å) methyl ester groups. The dihedral angle between the methyl ester groups is 44.20 (3)°. In the crystal structure, inter­molecular N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules along the a axis, through R22(8) and R22(22) ring motifs, forming infinite two-dimensional polymeric sheets. ππ Contacts between the thia­zole rings [centroid–centroid distance = 3.536 (2) Å] may further stabilize the structure.

Related literature

For general background, see: Fu et al. (2005[Fu, D. C., Chu, F. M. & Guo, Z. R. (2005). Chin. Chem. Lett. 16, 1305-1308.]); Saprykina et al. (2006[Saprykina, V. A., Vinogradova, V. I., Ambartsumova, R. F., Ibragimov, T. F. & Shakhidoyatov, Kh. M. (2006). Chem. Nat. Compd (USSR), 42, 4470-4472.]). For a related structure, see: Cheng (2007[Cheng, X.-W. (2007). Acta Cryst. E63, o3728.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O5S

  • Mr = 273.27

  • Monoclinic, P 21 /c

  • a = 12.240 (2) Å

  • b = 5.7500 (8) Å

  • c = 19.887 (3) Å

  • β = 120.016 (8)°

  • V = 1211.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.22 × 0.08 × 0.06 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.982

  • 10459 measured reflections

  • 2168 independent reflections

  • 1102 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.124

  • S = 1.01

  • 2168 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.22 3.057 (5) 163
N2—H2B⋯O5ii 0.86 2.27 3.097 (5) 160
C6—H6A⋯O3iii 0.96 2.53 3.408 (5) 152
C6—H6C⋯O4iv 0.96 2.51 3.385 (6) 152
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound belongs to thiazole group of organic compounds. Thiazole derivatives have been widely used as intermediates for the syntheses of pharmaceutical active products (Saprykina et al., 2006). 2-Amino thiazole derivatives are the special compounds, which are used for the syntheses of antibiotics (Fu et al., 2005) such as cephalosporins. We report herein the crystal structure of the title compound, (I), which was obtained by alkolysis of mica ester (S-2-benzothiazolyl(Z)-2-(2-aminothiazole -4-yl)-2-methoxy-carbonylmethoxyiminothioacetate) in methanol.

In the molecule of (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. (I) is different from (Z)-(2-amino- thiazol-1-ium-4-yl)-2-(t-butoxycarbonylmethoxyimino)acetate monohydrate, (II) (Cheng, 2007), due to the attachements at carboxylate groups. In (I), ring A (S1/N1/C1-C3) is, of course, planar, and it is oriented with respect to the planar methyl ester moieties (O1/O2/C5/C6) and (O4/O5/C8/C9) at dihedral angles of 87.33 (3) and 87.18 (3) °, respectively, while the dihedral angle between the methyl ester moieties is 44.20 (3)°.

In the crystal structure, intermolecular N-H···N, N-H···O and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The N-H···N hydrogen bonds link the molecules into dimers by forming the R22(8) ring motifs (Bernstein et al., 1995), then N-H···O hydrogen bonds connect the dimers by forming R22(22) ring motifs, and C-H···O hydrogen bonds interlink the dimers along the a axis forming infinite two-dimensional polymeric sheets. The π-π contact between the thiazole rings, Cg1—Cg1i [symmetry code: (i) -x, 1 - y, 1 - z, where Cg1 is centroid of the ring A (S1/N1/C1-C3)] may further stabilize the structure, with centroid-centroid distance of 3.536 (2) Å.

Related literature top

For general background, see: Fu et al. (2005); Saprykina et al. (2006). For a related structure, see: Cheng (2007). For bond-length data, see: Allen et al. (1987). For ring motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of the title compound, mica ester, S-2-benzo- thiazolyl-(Z)-2-(2-aminothiazole-4-yl)-2-methoxy-carbonylmethoxyimino- thioacetate) (1.0 g, 2.195 mmol) was suspended in methanol (10 ml). The suspension was heated, stirred at pH = 6.5 for 15 min. The clear transparent mixture was allowed to cool at room temperature from which light yellow crystals were obtained after 3 d.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2), C-H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Methyl 2-(2-amino-1,3-thiazol-4-yl)-2-[(Z)-methoxycarbonylmethoxyimino]ethanoate top
Crystal data top
C9H11N3O5SF(000) = 568
Mr = 273.27Dx = 1.498 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2168 reflections
a = 12.240 (2) Åθ = 2.2–25.2°
b = 5.7500 (8) ŵ = 0.29 mm1
c = 19.887 (3) ÅT = 296 K
β = 120.016 (8)°Needle, yellow
V = 1211.9 (3) Å30.22 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2168 independent reflections
Radiation source: fine-focus sealed tube1102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
Detector resolution: 7.80 pixels mm-1θmax = 25.2°, θmin = 2.2°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 66
Tmin = 0.975, Tmax = 0.982l = 2323
10459 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0434P)2]
where P = (Fo2 + 2Fc2)/3
2168 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C9H11N3O5SV = 1211.9 (3) Å3
Mr = 273.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.240 (2) ŵ = 0.29 mm1
b = 5.7500 (8) ÅT = 296 K
c = 19.887 (3) Å0.22 × 0.08 × 0.06 mm
β = 120.016 (8)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2168 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1102 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.100
10459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
2168 reflectionsΔρmin = 0.25 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20130 (10)0.51478 (17)0.37288 (6)0.0437 (4)
O10.2059 (3)0.7883 (4)0.38158 (15)0.0513 (11)
O20.1345 (3)0.5059 (5)0.29312 (18)0.0625 (14)
O30.3512 (2)0.3538 (4)0.46873 (15)0.0426 (10)
O40.5574 (3)0.3846 (5)0.67254 (18)0.0613 (12)
O50.4360 (3)0.6603 (5)0.59065 (17)0.0574 (11)
N10.0076 (3)0.2430 (5)0.43907 (18)0.0351 (11)
N20.1795 (3)0.1177 (5)0.45036 (18)0.0469 (14)
N30.2360 (3)0.3246 (5)0.46982 (18)0.0383 (12)
C10.0212 (3)0.4257 (6)0.4048 (2)0.0312 (12)
C20.0702 (3)0.5859 (6)0.3675 (2)0.0408 (16)
C30.1223 (4)0.2676 (6)0.4263 (2)0.0348 (12)
C40.1463 (4)0.4379 (6)0.4141 (2)0.0322 (12)
C50.1617 (4)0.5785 (7)0.3553 (3)0.0372 (14)
C60.2126 (4)0.9446 (7)0.3265 (3)0.0620 (19)
C70.4506 (3)0.2847 (6)0.5423 (2)0.0422 (14)
C80.4774 (4)0.4681 (7)0.6026 (3)0.0426 (16)
C90.6022 (5)0.5459 (9)0.7365 (3)0.082 (2)
H20.062940.716490.342450.0490*
H2A0.140220.004310.476130.0560*
H2B0.255590.143640.440050.0560*
H6A0.246311.091530.351080.0935*
H6B0.129550.967010.282790.0935*
H6C0.266330.878530.309210.0935*
H7A0.526050.256990.539100.0503*
H7B0.428140.140450.557660.0503*
H9A0.659200.467600.783910.1228*
H9B0.531850.605290.739930.1228*
H9C0.645240.672310.728080.1228*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0355 (6)0.0453 (6)0.0495 (8)0.0083 (5)0.0206 (6)0.0116 (5)
O10.074 (2)0.0389 (17)0.047 (2)0.0059 (15)0.0348 (18)0.0026 (14)
O20.094 (3)0.0595 (19)0.043 (2)0.0171 (18)0.0411 (19)0.0062 (16)
O30.0295 (16)0.0579 (18)0.0405 (18)0.0004 (13)0.0175 (14)0.0102 (14)
O40.057 (2)0.061 (2)0.045 (2)0.0107 (16)0.0098 (18)0.0004 (16)
O50.052 (2)0.0447 (19)0.069 (2)0.0084 (15)0.0254 (18)0.0027 (15)
N10.033 (2)0.0328 (18)0.039 (2)0.0001 (15)0.0176 (18)0.0045 (15)
N20.034 (2)0.046 (2)0.062 (3)0.0034 (16)0.025 (2)0.0216 (18)
N30.031 (2)0.047 (2)0.040 (2)0.0043 (16)0.0200 (19)0.0012 (17)
C10.031 (2)0.035 (2)0.027 (2)0.0002 (18)0.014 (2)0.0013 (17)
C20.044 (3)0.041 (2)0.039 (3)0.005 (2)0.022 (2)0.0073 (19)
C30.031 (2)0.035 (2)0.031 (2)0.0007 (19)0.010 (2)0.0015 (17)
C40.034 (2)0.034 (2)0.030 (2)0.0019 (18)0.017 (2)0.0007 (18)
C50.035 (2)0.037 (2)0.040 (3)0.0008 (19)0.019 (2)0.000 (2)
C60.092 (4)0.042 (3)0.064 (3)0.002 (2)0.048 (3)0.017 (2)
C70.028 (2)0.044 (2)0.046 (3)0.0050 (19)0.012 (2)0.010 (2)
C80.028 (2)0.049 (3)0.051 (3)0.001 (2)0.020 (2)0.004 (2)
C90.084 (4)0.096 (4)0.045 (3)0.004 (3)0.017 (3)0.019 (3)
Geometric parameters (Å, º) top
S1—C21.710 (4)N2—H2B0.8600
S1—C31.748 (4)C1—C21.349 (5)
O1—C51.318 (5)C1—C41.449 (7)
O1—C61.451 (6)C4—C51.509 (6)
O2—C51.184 (6)C7—C81.505 (6)
O3—N31.431 (5)C2—H20.9300
O3—C71.413 (4)C6—H6A0.9600
O4—C81.327 (6)C6—H6B0.9600
O4—C91.443 (6)C6—H6C0.9600
O5—C81.189 (5)C7—H7A0.9700
N1—C11.390 (5)C7—H7B0.9700
N1—C31.303 (7)C9—H9A0.9600
N2—C31.341 (6)C9—H9B0.9600
N3—C41.281 (5)C9—H9C0.9600
N2—H2A0.8600
S1···N12.583 (4)N1···H2Avii2.2200
S1···O5i3.446 (4)N2···H9Aviii2.9300
S1···N3i3.486 (4)N3···H6Aiii2.7700
S1···C8i3.649 (6)N3···H2Avii2.6800
S1···C9ii3.605 (5)C1···C3i3.430 (5)
S1···H9Cii3.1100C2···C6v3.443 (6)
O1···O33.054 (4)C3···C1i3.430 (5)
O1···N33.111 (4)C6···O3vi3.408 (5)
O2···N33.257 (4)C6···O4iv3.385 (6)
O2···C6iii3.337 (5)C6···O2vi3.337 (5)
O3···C6iii3.408 (5)C6···C2ix3.443 (6)
O3···C8iv3.231 (6)C7···C7iv3.530 (5)
O3···C7iv3.284 (5)C7···O3iv3.284 (5)
O3···O52.747 (4)C8···O3iv3.231 (6)
O3···O13.054 (4)C8···S1i3.649 (6)
O4···C6iv3.385 (6)C9···S1x3.605 (5)
O5···S1i3.446 (4)C2···H6Bv2.7800
O5···N33.100 (4)C3···H9Aviii3.0700
O5···N2i3.097 (5)C4···H6Aiii2.9300
O5···O32.747 (4)C5···H6Aiii3.0000
O1···H7Aiv2.8500C5···H22.7500
O2···H6B2.6600H2···C52.7500
O2···H6Aiii2.7000H2···O2ix2.9100
O2···H6C2.6000H2A···N1vii2.2200
O2···H2v2.9100H2A···N3vii2.6800
O2···H6Bv2.8100H2B···O5i2.2700
O3···H7Aiv2.7400H6A···O2vi2.7000
O3···H6Aiii2.5300H6A···O3vi2.5300
O4···H6Civ2.5100H6A···N3vi2.7700
O5···H9C2.6500H6A···C4vi2.9300
O5···H7Bvi2.8300H6A···C5vi3.0000
O5···H9B2.6100H6B···O22.6600
O5···H2Bi2.2700H6B···O2ix2.8100
O5···H7Aiv2.8800H6B···C2ix2.7800
N1···S12.583 (4)H6C···O22.6000
N1···N32.768 (6)H6C···O4iv2.5100
N1···N2vii3.057 (5)H7A···O1iv2.8500
N2···N3vii3.250 (5)H7A···O3iv2.7400
N2···O5i3.097 (5)H7A···O5iv2.8800
N2···N1vii3.057 (5)H7B···O5iii2.8300
N3···O53.100 (4)H9A···N2xi2.9300
N3···N2vii3.250 (5)H9A···C3xi3.0700
N3···O13.111 (4)H9B···O52.6100
N3···O23.257 (4)H9C···O52.6500
N3···S1i3.486 (4)H9C···S1x3.1100
N3···N12.768 (6)
C2—S1—C388.9 (2)O4—C8—O5124.3 (4)
C5—O1—C6115.8 (3)O4—C8—C7109.5 (3)
N3—O3—C7107.2 (3)O5—C8—C7126.2 (4)
C8—O4—C9116.6 (4)S1—C2—H2125.00
C1—N1—C3109.6 (3)C1—C2—H2125.00
O3—N3—C4110.6 (3)O1—C6—H6A109.00
C3—N2—H2B120.00O1—C6—H6B109.00
H2A—N2—H2B120.00O1—C6—H6C109.00
C3—N2—H2A120.00H6A—C6—H6B109.00
N1—C1—C2116.2 (4)H6A—C6—H6C110.00
N1—C1—C4119.0 (3)H6B—C6—H6C109.00
C2—C1—C4124.7 (3)O3—C7—H7A109.00
S1—C2—C1110.4 (3)O3—C7—H7B109.00
N1—C3—N2124.4 (3)C8—C7—H7A109.00
S1—C3—N2120.7 (4)C8—C7—H7B109.00
S1—C3—N1114.9 (3)H7A—C7—H7B108.00
N3—C4—C1118.7 (4)O4—C9—H9A109.00
N3—C4—C5123.9 (5)O4—C9—H9B109.00
C1—C4—C5117.4 (4)O4—C9—H9C109.00
O2—C5—C4122.8 (4)H9A—C9—H9B110.00
O1—C5—O2125.6 (4)H9A—C9—H9C110.00
O1—C5—C4111.6 (4)H9B—C9—H9C109.00
O3—C7—C8111.1 (3)
C3—S1—C2—C10.1 (3)O3—N3—C4—C50.9 (5)
C2—S1—C3—N10.4 (3)N1—C1—C2—S10.3 (4)
C2—S1—C3—N2178.8 (3)C4—C1—C2—S1177.4 (3)
C6—O1—C5—O24.4 (8)N1—C1—C4—N319.6 (5)
C6—O1—C5—C4174.3 (4)N1—C1—C4—C5158.5 (3)
C7—O3—N3—C4163.2 (3)C2—C1—C4—N3157.4 (4)
N3—O3—C7—C876.2 (4)C2—C1—C4—C524.5 (5)
C9—O4—C8—O54.5 (8)N3—C4—C5—O183.5 (5)
C9—O4—C8—C7174.4 (4)N3—C4—C5—O297.7 (6)
C3—N1—C1—C20.6 (4)C1—C4—C5—O198.6 (5)
C3—N1—C1—C4177.8 (3)C1—C4—C5—O280.2 (6)
C1—N1—C3—S10.6 (4)O3—C7—C8—O4170.8 (4)
C1—N1—C3—N2178.6 (3)O3—C7—C8—O510.3 (7)
O3—N3—C4—C1178.8 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y+3/2, z1/2; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x, y1/2, z+1/2; (vi) x, y+1, z; (vii) x, y, z+1; (viii) x1, y+1/2, z1/2; (ix) x, y+1/2, z+1/2; (x) x+1, y+3/2, z+1/2; (xi) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1vii0.862.223.057 (5)163
N2—H2B···O5i0.862.273.097 (5)160
C6—H6A···O3vi0.962.533.408 (5)152
C6—H6C···O4iv0.962.513.385 (6)152
Symmetry codes: (i) x, y+1, z+1; (iv) x+1, y+1, z+1; (vi) x, y+1, z; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H11N3O5S
Mr273.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.240 (2), 5.7500 (8), 19.887 (3)
β (°) 120.016 (8)
V3)1211.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.22 × 0.08 × 0.06
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10459, 2168, 1102
Rint0.100
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.124, 1.01
No. of reflections2168
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.223.057 (5)163
N2—H2B···O5ii0.862.273.097 (5)160
C6—H6A···O3iii0.962.533.408 (5)152
C6—H6C···O4iv0.962.513.385 (6)152
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer and for technical support, respectively.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X.-W. (2007). Acta Cryst. E63, o3728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFu, D. C., Chu, F. M. & Guo, Z. R. (2005). Chin. Chem. Lett. 16, 1305–1308.  CAS Google Scholar
First citationSaprykina, V. A., Vinogradova, V. I., Ambartsumova, R. F., Ibragimov, T. F. & Shakhidoyatov, Kh. M. (2006). Chem. Nat. Compd (USSR), 42, 4470–4472.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds